UNCLASSIFIED

AD NUMBER

ADB129570

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors; Critical Technol ogy; MAR
1988. Ot her requests shall be referred to Air
Force Armanent Laboratory, Attn: FXG Eglin Ar
Force Base, Florida 32542-5434. This docunent
contai ns export-controlled technical data.

AUTHORITY
AFSC I tr, 13 Feb 1992

THISPAGE ISUNCLASSIFIED

THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER D02 DIRECTIVE 5200,2C AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND GISCLOSURE,

DISTRIBUTION STATEMENT A

APPROVED FNR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED,

DNC Fre pnpw .. €S0V @

AFATL-TR—-88-62, VOL III

Common Ada Missile Packages —Phase 2
' (CAMP-2)

Volume III. CAMP Armonics Benchmarks

cconen AD-B129 570

T Taylor

McDONNELL DOUGLAS ASTRONAUTICS COMPANY

P O BOX 516 :

ST LOUIS, MO 63166 DT‘C
o ELECTE

NOVEMBER 1988 DEC 1 213988

“E

FINAL REPORT FOR PERIOD SEPTEMBER 1985 - MARCH 1988

CRITICAL TECHNOLOGY

Distribution authorized to U.S. Government agencies and their contractors only;

thie-reper-dosumenic-tost-and-evaiuatien; distribution limitation applied March 1988.

Other requests for this document must be referred to the Air Force Armament
Laboratory (FXG) Eglin Air Force Base, Florida 32542 - 5434.

DESTRUCTION NOTICE -~ For classified documents, follow the procedures

in DoD 5220.22 - M, Industrial Security Manual, Section 11-19 or DoD 5200.1 - R,
Information Security Program Regulation, Chapter 1X. For unclassified, limited
documents, destroy by any method that will prevent disclosure of contents or
reconstruction of the document.

®

¢ AIR FORCE ARMAMENT LABORATORY

Air Force Systems Command# United States Air Force BEglin Air Force Base, Florida

8g 12 12 013

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated
or in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication, or otherwise as in any manner construed,
as licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
th.at may ir any way be related thereto.

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

STEPHEN C. KORN
Chief, Aeromechanics Division

Even though this report may contain special release rights held by
the controlling office, please do not request copies from the Air Force
Armament Laboratory. If you qualify as a recipient, release approval
will be obtained from the originating activity by DTIC. Address your
request for additional copies to:

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

If your address has changed, if you wish to be removed from our mailing
list, or if your organization no longer employs the addressee, please notify
AFATL/ FXG, Eglin AFB, FL 32542-5434, to help us maintain a current mailing
list.

Do not return copies of this report unless contractual obligations or
notice on a specific document requires that it be returned.

o

UNCLASSIFIED

§ i
‘ g Form Approved
REPORT DOCUMENTATION PAGE omm 0704-0188

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

_UNCLASSIFIED CRITICAL TECENOLOGY

2w. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/ AVAILABILITY OF REPORT

. Distribution authorized to U.S. Government
2b.-DECLASSIFICATION / DOWNGRADING SCHEDULE Agencies and their contractors; shbe-repons

e e e v

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
AFATL-TR-88-62, Volume III

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
McD 11 Doual (i applicable) Aeromechanics Division
B L, 108 asmv Guidance and Control Branch
6 ADORESS (City, State, and ZiP Code) 7b. ADDRESS (City, State, and ZIP Code)
P.0. Box 516 Air Force Armament Laboratory
St Louis MO 63166 Eglin Air Force Base, Florida 32542-5434
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL]| 9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER
ORGANIZATION (if applicable)
STARS Joint Program Office F08635-86~C~'0025
[8 AOORESS (City, State, and ZIP Code) 10. SOURCE OF FUNOING NUMBERS
Room 30139 (1211 Fern St) PROGRAM PROJECT TASK WORK UNIT
The Pentagon ELEMENT NO. | NO. NO. ACCESSION NO.
Washington DC 20301-308) 637560 9210 GT 02
1. TITLE (Include Security Classification) Common Ada Missile Packages-Phase 2 (CAMP-2),
Volume III: CAMP Armonics Benchmarks
12. PERSONAL AUTHOR(S)
S. Cohen and T. Taylor
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day)]15. PAGE COUNT
Final rrom Sep 85 roMar 88 November 1988 70
16, SUPPLEMENTARY NOTATION N
Availability of this report is specified on verso of front cover. (OVER)
V7. COSATI COOES 18. SUBJECT TERMS (Continue on reverse i necessary and identify by block number)
FIELD GROUP SUB-GROUP Reusable Software, Missile Software, Software Generators,

Ada parts, Composition, Systems, Software Parts

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The CAMP project, primarily funded ty the STARS Joint Program Office, sponsored by the Air
Force Armament Laboratory, and performed by McDonnell Douglas, has taken a pragmatic
approach to demonstrating the feasibility and utility of the concept of software reuse for
real-time embedded missile systems. CAMP products include: 452 operational flight software
parts in Ada for tactical missiles, and a prototype parts engineering system to support
parts identification, cataloging and construction. In order to demonstrate the value of the
reusc concept, a missile subsystem was built using the CAMP parts. Results indicate a
significant increase in software productivity when developing systems using parts, Ada,
modern software engineering practice, robust software tools, and knowledgeable software
engineers.

This report is documented in three volumes: Volume I - CAMP Parts and Parts Composition
System, Volume II - 11th Missile Demonstration, and Volume III - CAMP Armonics Benchmarks.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OunclassiFieounumited (3 same as ret. [omic users | UNCLASSIFIED
222, NAME OF RESPONSIBLE INOIVIOUAL 22b. TELEPHONE (inciude Area Code) | 22¢. OFFICE SYMBOL
' Christine M. Anderson 59042 882-2961 AFATL/FXE
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

3. DISTRIBUTION/AVAILABILITY OF REPORT (CONCLUDED)

distribution limitation applied March 1988. Other requests for this document
must be referred to the Air Force Armament Laboratory (FXG), Eglin Air Force
Base, Florida 32542-5434.

16. SUPPLEMENTARY NOTATION (CONCLUDED)

TRADEMARKS
The following table lists the trademarks used throughout this document:
TRADEMARK TRADEMARK OF
ACT Advanced Computer Techniques
ART Inference Corporation
ART Studio '{ Inference Corporation
CMS - | Digital Equipment Corporation
DEC Digital Equipment Corporation
Mikros Mikros, Inc.
Oracle Oracle Corporation
Scribe Scribe Systems
Symbolics Symbolics, Inc.
Symbolics 3620 Symbolics, Inc.
TLD TLD Systems Ltd
VAX Digital Equipment Corporation
VMS Digital Equipment Corporation

UNCLASSIFIED

PREFACE

This report describes the work performed, the results obtained, and the conclusions reached during
the Common Ada Missile Packages Phase-2 (CAMP-2) contract (F08635-86-C-0025). This work was
pérfomlcd by the Software and Information Systems Department of the McDonneil Douglas Astronautics
Company, St. Louis, Missouri (MDAC-STL), and was sponsored by the United States Air Force Ar-
mament Laboratory (FXG) at Eglin Air Force Base, Florida. This contract was performed between Sep-
tember 1985, and March 1988.

The MDAC-STL CAMP program manager was: -

Dr. Daniel G. McNicholi

Technology Branch

Software and Information Systems Department
McDonnell Douglas Astronautics Company
P.O. Box 516

St. Louis, Missouri 63166

The AFATL CAMP program manager was:

Christine M. Anderson

Guidance and Control Brauch
Aeromechanics Division

Air Force Armament Laboratory

Eglin Air Force Base, Florida 32542-5434

This report consists of three volumes. Volume 1 contains information on the development of the
CAMP parts and the Parts Composition System. Volume II contains the results of the 11th Missile
Application development. Volume 111 contains the results of the CAMP Armonics Benchmarks Suite
development.

Commercial hardware and software products mentioned in this report are sometimes identified by
manufacturer or brand name. Such mention is necessary for an understanding of the R & D effort, but
does not constitute endorsement of these items by the U.S. Government.

ACKNOWLEDGEMENT

Special thanks to the Armament Division Deputy for Armament Control Office; to the Software
Technology for Adaptable, Reliable Systems (STARS) Joint Program Office; to the Ada Joint Program
Office (AJPO); and to the Air Force Electronic Systems Division, Computer Resource Management

Technology Program Office for their support of this project.

Accession For

NTIS GRAXI 0
BYis DTIC TAB
BoPY Unannounced B
'“ﬂ"’f:““ Justiftioation. __ ___ _ |
By.
Distribution/

Availability Codes
[Avail and/or
Special

Dist

c-2

. =
A 4

TRADEMARKS
The following‘table lists the trademarks used throughout this document:
TRADEMARK TRADEMARK OF
ACT Advanced Computer Techniques
ART Inference Corporation
ART Studio Inference Corporation
CMS Digital Equipment Corporation
DEC Digital Equipment Corporation
Mikros Mikros, Inc.
Oracle’ Oracle Corporation
Scribe - Scribe Systems
Symbolics Symbeolics, Inc.
Symbolics 3620 Symbolics, Inc.
TLD TLD Systems Ltd
VAX Digital Equipment Corporation
VMS Digital Equipment Corporation

iv

Table of Contents

Section Tide Page
I T RO B ROHII- . 2 0. o bt s e adeailass lone an st easessosdsdonnssessnsnssensnsasdugmsssnsnesasnas venais 1
O e G T e e toeeesont sncebaoasnn ssassbesnshatsnassashntasest sespaantsnecssassossssesesss 1
2. SYSICIN OVEIVIEWccceeveeerecensniiennsustinesiiosssesaisstssssonsssasessasmosssasasstsatonsassoss sasassansssasses 1
2 DT (OEAERY aomrricoeomome et oo oA 0D (AT T O T SO 2
11 BENCHMARK DEFINITIONSccccosunuiiininniiesnismmsnsssmnessssssasasissassssssasssasassesssasns 3
R BeRe AT VOIS 20 0 e e e srviesuestonss 5t casenasaenssssnsaes 3
2k« EeiEnTin R (G s g i o e e P R O oA 3
a. Compilation Benchmatk CIassc.cooevvvenvesvseianansesesasionssnssamnasesassnssassssosasonseses 3
b. Polynomial Benchmark CIassccccecvnerersnsisussvsesresessarssassesasssassansassessrasossassanasas 3
c. Integrated Execution Benchmark Class P L T8 e Y e 4
G, SUIMMATY ..cccviiiiiieeiiironeiiiiieeiisanieisscssaisissssasensssnssacsonsns sasoessoatasssssesnssnsassons saarsass 5
m PURPOSE ANIEYBDEBIGN i...iu005:0c0 0000 st0ns0senmstsnssssisesnsssasasssossasanssaonssosarass idesaasuidessnssunserforasts 8
1. General ReqUIrEMENLSccccceiitevieieniisinessnssenissssassssnssossssssonsstontasessssasssssssesanssassens 8
a. Identifying Ada Compiler INAdEQUACIEScocevimrucrniisssrnssesisassasassssesnsssesassanses 8
b. Testing Calculation ACCUIACIESocniresmirarisisesesasasassssisnsassotssnsesssnansnsassesssnsass 9
c. Testing Time and Space PerfOfMAnNCec.ovcrmesssisssissensarnssnrasnesssasassosssnnass 9
2. Compilation Benchmarkscococeccivnnuniiensnnnieisnnansinsssessassisssssssassssssssssasasssnsns 10
A, Compilation Group 1c.cevieniiiinnnnniinensin s msssssssssasnsssesse 10
b. Compilation Group 2cccvveivniniiivinnessssisnnesssstsssesasassassssssssassosnesasssssess - 12
¢. Compilation Group 3 -l RO o B TN o fo b P e 12
3. Integrated Execution Benchmarks O 8 O X IO DAL R 14
a. Integrated EXeCUNON 1ccccomurirnisnneinnsesnisasnsassassasessssessassasassassssasassasasassasonsnsans 14
b. Integrated EXecution 2cccoeeenicncsncerserurecsnsansosessaasassunnsasseses T S B e ecis - 15
c. Integrated Execution 3ccoccvveneninincnnnnes T g ST S S e 16
4. Polynomial Benchmarksccccecvvsimveecnsassssesasannese o LY
V' MEBTHODOEOGY ...cniisceitinesoos sesnssssisisdos sinsisasasnmsssnssonsisonsi ssasues sisifssmass sssssnoastsnssesivos 22
o LAY osoomestaiomtmonoimnoommmsamomoina oo OGO SN e3P0 a0 O OO 22
2. Compilation Benchmark Methodscccccviiiianieicnerrirniinisnminissassessassssssaerasessons 23
3. Execution Benchmark Methodsc.coccecesiniinrnniivessniensinsnnsssansonssstssssasssssssssonasasss 23
a. Collecting Valid Timing Datac.cocccvvicnrnsiisnssnssscnnsssssassassosres w128
b. Collecting Benchmark OUIPUL DRIcvurueesonssrssmssassssnsssssssmssssssssssssasassssassenss 26
c. Automation of the Execution Benchmarksccoceuicivnssnnsenaseseiesessssesssansasasass 26
v USING THE BENCHMARKSccoiiiinitiniiaissisessissesssasis ssssssssasasssasssasssranss 28
1. Logical Directoriesc.ccoviinrierneninisniemmaisissnisssossssnsassasnsaesssosses e e 28
2. Using the Compilation Benchmarksccounienivsnimsssisssissnsasesssessosnsssesssnsans ————— 28

£ .

Table of Contents (CONCLUDED)

Title Page
3. Compiling the Polynomial and Integrated Execution Benchmarksc....ooorennne 30
4. Running the EXeCUtion BENCRIMAIKSc.evuuneerenreesorsemsossonsassssmssssssssssssessossasssens 31
a. Polynomial Benchmark EXECULONccccoouriuneresserensennermreraasesaresessssessaassnne 3
b. Integrated Execution BENCAMAIKScccreeenriererennerernseresennsessssesosssusssssssonsasnns 32
: -
A ARMONICS PEINCHAIARK SUITE..foaccecessnesosncnomsiotosssssssasbnissosnsnssessosassassssasasios 35
1. Compilation Benchmark Dalacocoiniiinnninnninsienmsnissossssssssmmsiss s 35
2. Polynomial Benchmark DAtaoweemrersressonssesssssssssssnsssssssmssssssssessisssasssssssssnsens 36
3. Integrated EXecution BenchmMArk DALAeevussmemssessssnsssmnsssssssnssssssssssssssssnsssnsess 38
B ADA SOURCE CODE INVENTORYccccoininininsnininnmsssosissisnsassmamssssssssssssssssnss 45
vi

List of Figures
Figure Tide
1 Compilation 1 SIUCHIUTEcccvinuiveseieesnsencosisssessssssessosssesncrsssesssssssosesasassssstssessssssasssssasanss
2 Compilation 2 SIUCHULEcccoreucecetemsisiemmmacssorsmsmnssasnsassssasasossssssassenssssnsasasassssnsrssssssnsase
3 COMPIIANON 3 SIUCIULScooomermemersnssrsmmssmssssosessnsssssssssessesssassassssssnsonsossssssosssonsosssns e
4 Identity Function Defeats Constant Propagationc.ceceeemeseesssensnsrcsoressssasssssssssesaosanns
5 Tautological Function Prevents Assignment Removalcccceunnieniranssrcsnrescssranassonesnes
A-1 Radian Sine 0N SYSIEM Acocciincirsnnnemesmonsienansnenssosssnsssossssssossssosessssssaasasnsssssssssnsssns
A-2 Radian Cosine on SYStEM Accooveiieriinisinsnisisunscsssesssisssssessssnssssssssssssssasssssasssasonsnase
A3 Radian Tangent on System Accccvveeeemesersreresssnsnesssesannsnessons e o A
A4 T G S i1 DTS) S L TN e etteneenscnts eseonssssstonasostastsobtors sunsttsesssannnssseses ssassssenssroseessssaes
A-5 ArCCOSINE ON SYSIEM Acoiiiiiiininnnninseesssseniiscssnsesnessesasssssassssassasssessastsanssasssssssnsssssss
A6 Radian Arctangent on SYSIEM Accccoeieennrerseeniinsnesesassssassoresmasesasserassassssosssnssssasssssossanss
A7 Radian SiNe 0N SYSIEm Bccomemenvernesssssensmnssssssssssssesssssssssssssossssens
A-8 Radian Cosine on SYSIEM Bc.cccceeveernencsisnsnnnnnsssssnssssssssssossssssssssssassssssssoses vt coasonTes
A9 Radian Tangent on System Bcccceiiiiiinncncnninnnecnsnnsennccansanns e e,
A-10 Arcsine on System Bccovviinieennnns
A-11 ArCCOSINe 0N SYSIEM Bcoooeuieiiieniisinssnssrinsmsonesassrssmnssssessersonssnossssosensossorsasnssssasiansanse
A-12 Radian Arctangent on System Bcocceineennninicnecsnnnsesscscssssesaessesesss
vii

Page

10
13
13

25
39
39
39
39

41
41
41
41

b i "3
Rt A
5

Table

O 0 N QA D bW N

- e e
PE8 =3
—t

A-2
A-3
A4
A-S
B-1

List of Tables

Title

CAMP Armonics Benchmark SUMMALYccoeevereesesernvnmsersesmnesnasersnssssasasesenss)
CAMP Part Benchmarks of Integrated EXecution 1ccceeveerresismerensnsssssansnssnssaesesess
CAMP Part Benchmarks of Integrated Execution 2 reoR s 5ot es s soa etEe s s L ahe cetss
CAMP Pari Benchmarks of Integrated Execution 3 A e M e .
CAMP Polynomial Parts Execution Benchmarks . S, . e eas i e s thes s
Detail of Sine Performance Benchmarkscuieresevinsinssssncanssssssisssssssssssssssessssssnsssas
Detail of Cosine Performance BenChInarkscceceeivrierrserivnsancsersnrssssesssansessessssssnsaes
Detail of Tangent Performance Benchmarkscoouveeeeevrsernnnesnrunennnsesenensnsesssensesenens

Detail of Arcsine Performance Benchmarkscccceeeveerveeeereenenes

Detail of Arccosine Performance Benchmarksevceuevenerecnnnnsennsnsesesesnsensessansnsnsans
Detail of Arctangent Performance Benchmarksccocouvveenvieenneesncereencsnisenssessenenne

Detail of Square Root Performance Benchmarkingce.c.....

Benchmark Suite Command

P T OCEAUTES . 5. e sterer s b evunessesseabavenssrtesssstosrsoarses arse vrssssieeesnre

Compilation Benchmark Datacccoorviivinnsnsnisrincnnnsiinssnsnsnssnssnssisasssssssssanss ssssnoses

System B Polynomials Sizes

Timing of Integrated Execution 1e..covievvveniseieivsnemsnssisensnenmsesnssismsessesemsasessesnsansees

Timing of Integrated Execution 2cceceeeeeerennnnunsessnnsnnssessassoses Sl

Timing of Integrated Execution 3ccocevevvevervcresrmenrseccsnineses

Ada Source Code Inventory

--

viii

Page

14
15
16
17
8
19
20
20
20
21
21
29
36
37
42
43

List of Acronyms

ACS Ada Compilation System

ACVC Ada Compiler Validation Capability

AdaTUG Ada/Jovial Users Group

ADL Ada Design Language

AFATL Air Force Armament Laboratory

AFB Air Force Base

Al Artificial Intelligence

AJPO Ada Joint Program Office

AMPEE Ada Missile Parts Engineering Expert (System)
AMRAAM Advanced Medium Range Air-to-Air Missile
ANSI American National Standards Institude

APSE Ada Programming Support Environment
Ammonics Armament Electronics

ART Automated Reasoning Tool

ASCIH American Standard Code for Information Interchange
BC Bus C(;ntroller

BDT Basic Data Types

BIM Bus Interface Module

CAD/CAM Computer-Aid Design/Computer-Aid-d Manufacturing
CAMP Common Ada Missile Packages

CCCB Configuration Change Control Board

CDRL Contractual Data Requirements List

CMS Code Management System

ConvFactors Conversion_Factors (TLCSC)

CPDS Computer Program Development Specification
CPPS Computer Program Product Specification

CsC Computer Software Component

CsCi Computer Software Configuration Item
CVMA Coordinate_Vector_Matrix_Algebra (TLCSC)
DACS Defense Analysis Center for Software

DBMS Data Base Management System

DCL DIGITAL Command Language

DDD Detailed Design Document

DEC Digital Equipment Corporation

DMA Direct Memory Access

DoD Department of Defense

ix

DoD-STD
DPSS
DSR

FORTRAN
GPMath
HOL

ISA
JOVIAL
LISP
LLCSC
LOC
MDAC
MDAC-HB
MDAC-STL

MIL-STD
MRASM

NPNav
oCuU

PCS
PDL
R&D
RT
RTE
SDF
SDI
SDN
SDR
SEAFAC
SEL

Department of Defense Standard

Digital Processing Subsystem

Digital Standard Runoff

DEC /Test Manager

Forms Management System

FORmula TRANslation
General_Purpose_Math (TLCSC)
Higher-Order Language

Hour

lnput/Outﬁut

Inertial Sensor Assembly

Jules Own Version of International Algebraic Language
List Processing (language)

Lower Level Computer Software Component
Lines of Code

McDonnell Douglas Astronautics Company
McDonnell Douglas Astronautics Company - Huntington Beach
McDonnell Douglas Astronautics Company - St. Louis
McDonnell Douglas Corporation

Military Standard

Medium Range Air-to-Surface Missile
Nautical Miles
North_Pointing_Navigation_Parts (TLCSC)
Operator Control Unit

Operations

Personal Computer

Pants Composition System

Program Design Language

Research and Development

Remote Terminal

Real-Time Embedded

Software Development File

Strategic Defense Initiative

Software Development Notebook

Software Discrepancy Report

System Engineering Avionics Facility

Software Engineering Institute

SEP/SCP
SIGAda
SRS
STARS
stmt
SURMOS
TLCSC
TLDD
UnivConst
VAX
VMS
WGS72

Software Enhancement Proposal/Software Change Proposal
Special Interest Group on Ada

Software Requirements Specification

Software Technology for Adaptable, Reliable Systems
statement

Start-Up Real-time Multi-tasking Operating System
Top-Level Computer Software Component

Top-Level Design Document

Universal_Constants (TLCSC)

Virtual Address Extension

Virtual Memory System

World Geodetic System, 1972

xi/xii (Blank)

-

SECTION 1
INTRODUCTION

1. IDENTIFICATION

The CAMP Armonics Benchmark Suite facilitates the evaluation of Ada software engineering cn-
vironments and microprocessors intended for use in armonics! applications. The suite features both
compilation and execution benchmarks to measure the capabilities of compiler/run-time systems. All
benchmarks in this suite are portable and will permit comparisons to be made between widely different
Ada systems.

This volume identifies the benchmarks and benchmark drivers, and suggests techniques for applying
the Benchmark Suite. In addition, the structure, purpose, and methodology of the suite are explained to
familiarize readers with the suite and to facilitate the evaluation of the suite by engineers. For those
interested in using the benchmarks, a guide is provided in Section V. Appendix A contains data collecied
in the process of running the Benchmark Suite.

2. SYSTEM OVERVIEW

This Armonics Benchmark Suite serves a dual purpose: it offers a means for assessing the perfor-
mance of CAMP parts and, at the same time, provides support for evaluating the suitability of compiler
systems and their target machines to armonics applications.

Ada compiler performance is tested by a series of compilations, based on CAMP packages, which
require a compiler to process complex uses of Ada generic units. These advanced (but standard) Ada
features are used heavily in the CAMP parts and are central to the development and use of reusable
software.

Other benchmarks of the suite are targeted primarily at run-time performance issues such as storage
requirenients, execution time, and computational accuracy. These benchmarks consist of a selection of
CAMP parts which have been chosen as representative of the needs of armonics applications. Testing,
using these benchmarks, is facilitated by embedding the benchmarks within portable drivers, written in
Ada. Effectively, this allows the benchmarks to run themselves.

The Benchmark Suite can support a number of benchmarking scenarios:

e A project wishes to evaluate compilers for use in the development of a reusable parts library. The
suite provides test code for cvaluating compiler/linker systems.

e A compiler developer wants to measure the performance of his compiler/run-time system against an
established siandard. A group of benchmarks documented in this volume provides a standard for
comparison between differcnt systems.

larmament electronics

* An armonics application needs data on the memory utilization and timing efficiency of several
compilers in order to select an appropriate compiler for a new project. The benchmarks provide
opportunities for measuring these features of a given compiler.

e A potential user of CAMP parts wants specific perforinance data on the parts. The Benchmark
Suite gives a user the ability to measure performance for a selected group of parts on varying
architectures.

e A scientific application requires transcendental functions of known 'accuracy on a specific system
and is considering the CAMP polynomial parts. The benchmarks supply data on the scientific
functions of the CAMP Polynomials package.

The Benchmark Suite is supplemented by a set of procedures, encoded in DEC VAX Digital Com-
mand Language (DCL). By performing these procedures (or their equivalents on other operating
systems), an engineer may install, compile, and run the various benchmarks efficiently. Delails on the use
of the Benchmark Suite and its command procedure environment are discussed in Section V.

3. VOLUME OVERVIEW
This report contains five main sections:
1. Introduction: Introduces the CAMP Benchmark Suite and this volume.

2. Benchmark Definitions: Explains the system of classes and levels by which the benchmarks are
characterized. This section also introduces key terms and gives a tabular summary of benchmarks
contained in the suite.

3. Purpose and Design: Discusses the procedure used to run each of the benchmarks and gives
information about their structure and scope. For each benchmark, this section provides the follow-

ing information where applicable:

¢ Benchmark name ¢ Benchmark correct outputs
e Compilation structure | ¢ Data to be recorded
e Benchmark driver design e Methods for recording data

® Benchmark inputs

4. Methodology: Gives the overall methodology used to construct the Benchmark Suite in terms of
portability, validity, and usability.

5. Using the Benchmarks: Explains how to use the benchmarks on a project. Emphasis is placed on

making use of the suite command procedure environment to facilitate benchmarking.

SECTION I1
BENCHMARK DEFINITIONS

1. BENCHMARK LEVELS

The CAMP Armonics Benchmark Suite supports benchmarking at three hierarchical levels:

o TLCSC benchmarks: complete operational subsystems;

¢ LLCSC benchmarks: sequentially driven calls to integrated CAMP parts;

e Unit benchmarks: benchmarks of individual parts. (This level is generally reserved for the
benchmarks derived from CAMP polynomial parts .)

2. BENCHMARK CLASSES

The benchmark suite is functionally partitioned into three classes. The compilation benchmarks test
the ability of an Ada compiler to process source code typical of armonics applications and reusable
software. Benchmarks based on the CAMP Polynomials scientific function package are called the
polynomial benchmarks. Finally, the benchmarks developed from CAMP higher-level armonics parts are
referred to as integrated execution benchmarks. The following subsections define the three classes of
benchmarks in greater detail.

a. Compilation Benchmark Class

The compilation benchmarks test an Ada compiler’s ability to process reusable software. The
benchmarks concentrate on the complex syntax and semantics of several Ada armonics-oriented im-
plementations using CAMP parts. These implementations are skeletal in that they do not actually imple-
ment an armonics subsystem but merely collect the necessary CAMP parts via generic instantiation. The
instantiated parts are invoked in the benchmark code although the run-time effects of the invocations are
not within the designed scope of testing. The compilation benchmarks are valid tests of a compiler only
up to (and including) the linking phase.

b. Polynomial Benchmark Class

The Benchmark Suite includes benchmarks based on the CAMP Polynomial parts (part number
P688). These parts cover a range of basic mathematical functions, and provide a variety of techniques for
obtaining results. For each benchmark, the benchmark drivers obtain both execution time data and func-
tion argument-result pairs. In addition, compilation and linkage editing of the polynomial benchmarks
afford an opportunity to collect object code size data on all of the functions of the Polynomials package.

A software tool provided with the Benchmark Suite performs accuracy analysis and generates
reports for the polynomial benchmarks. This tool takes the output produced by the benchmarks and
generates a document incorporating time-consumption data and function-result accuracy measurement.
The following information is provided by the tool:

® "Truth values" for each function over that function’s benchmarked domain;
® Absolute error in the result of each argument-result pair

o Relative error in the result of each pair

e Maximum relative error tracking over the argument domain

o Maximum absolute and relative error over the argument domain

* Root-mean-square relative error over the argument domain

c. Integrated Execution Benchmark Class

The integrated execution benchmarks test aggregations of CAMP armonics parts. These
benchmarks concentrate on three of the major operational functions supported by the CAMP parts:

* Waypoint steering
® Navigation

e Kalman filter

In the waypoint steering and navigation cases above, data is gathered on CAMP parts in the
context of an armonics application. This method has the virtue of testing the parts in the kinds of
programs in which they will actually be applied. The benchmark based on the CAMP Kalman filter parts
provides data on these parts as they operate in a unit testing environment. This method permits the full
inclusion of all subprograms in the CAMP Kalman filter subsystem TLCSCs.

Output data from the integrated execution benchmark drivers consists of timing and result data
on the benchmark subprograms. The timing data characterizes the execution time required to make a
single call to the benchmark subprogram. The result data from the subprogram may be compared with the
standard data supplied by CAMP as part of the Benchmark Suite. This comparison allows the engineer
performing the benchmarks to spot errors and inaccuracies in run-time data processing on his system.

d. Summary

Table 1 summarizes the benchmarks in the CAMP Armonics Benchmark Suite. For each
benchmark. the table provides the following information:

e Benchmark name

o Benchmark number: a unique number for each set of benchmarks, corresponding to Section I of
this document. This number gives the subsection and the paragraph of Section I where the
benchmarks are described. In the case of the polynomial benchmarks, only the subsection number is
applicable. The paragraph number tabulated for the polynomial benchmarks is only for serializa-

tion.

e Level: TLCSC (T), LLCSC (L), or Unit (U) as defined above
e Class: Compilation (C), Polynomial (P), or Integrated Execution (I) as defined above
® Objective: the objective of the benchmark

* Description: a description of the TLCSCs used in the benchmark (for the polynomial benchmarks,
the description lists the polynomial expansion algorithm tested)

e Data to be recorded: summary of data values generated by running the benchmark and recorded in
Appendix A of this report

TABLE 1. CAMP ARMONICS BENCHMARK SUMMARY

- (1 0OF2)
Benchmark Data
Name No. | Lev. Cls. Objective Description to Record
Compilation | 2.1 L C | Test compilability of Packages compiled: Object code size.
parts needed in North N_P_Nav_Parts, Successful compile.
Pointing Navigation. Polynomial_Parts, Compilation time.
General_Purpose_Math,
Coord_Vector_Matrix_Alg,
Standard_Trig,
Basic_Data_Types,
Conversion_Factors,
WQ@s72 (Metric),
WQGsS72 (Unitless),
Universal_Constants
Compilation 2 2.2 L C [Test compilability of Packages compiled: Object code size.
pasts needed in Waypoint Waypoint_Steering, Successful compile.
Steering. Geometric_Operations, Compilation time.
Coord_Vector_Matrix_Alg,
Polynomial_Parts,
General_Purpose_Math,
Standard_Trig,
Basic_Data_Types,
Conversion_Factors,
WGS72 (Metric),
Universal_Constants
Compilation 3 23 L C | Test compilability of Packages compiled: Object code size.
parts needed in Kalman Katm_Filter_Compt_H_Parta, | Successful compile.
Filter. Kalm_Filter_Common_Parts, | Compilation time.
Polynomial_Parts,
General_Purpose_Math,
Kalman_Data_Types,
.| General_Vector_Matrix_Alg
Integrated 31 T 1 Test execution efficiency Packages tesied: Execution time.
Execution | of a guidance computation Waypoint_Steering, Code size.
implementation. Signal_Processing Result data.
Integrated 32 T 1 Test execution efficiency Packages tested: Execution time.
Execution 2 of a navigation operations Comm_Navigation_Parts, Code size.
implementation. Direction_Cosinc_Matrix Reault data.
General_Purpose_Math,
General_Vector_Matrix_Alg.
Wander_Az_Nav_Parts
Integrated 33 T I Test execution efficiency Packages tested: Execution time.
Execution 3 of a Kalman Filter Abstract_Data_Structs, Code size.
implementation. Kalm_Filier_Common_Parts, | Result data,
Kalm_Filter_Compt_H_Parts,
Kalm_Filter_Compx_H_Parts,
Sine 4.1 U P Test execution efficiency Methods tested are: Execution tiine,
Execution and result precision Taylor Series, Code size.
of sine function. Modified Taylor Series, Result Data
Hastings Algorithm,
Chebyshev Polynomial,
System Functions
Conine 4.2 U P Test exccution efficicncy Methods tested are: Execution time.
Execution and result precision Taylor Series, Code size.
of cosine function. Madificd Taylor Series, Result Data
Hastings Algorithm,
tart Algorithm,

System Functions

TABLE 1. CAMP ARMONICS BENCHMARK SUMMARY (CONCLUDED)

Benchmark Data
Name No. | Lev. Cls. Objective Description to Record
Tangent 43 u P | Test execution efficiency Methods tested are: Execution time.
Execution and result precision Taylor Serica, o Code alze.
of tangent function. Modified Taylor Series, Result Data
Hastings Algorithm,
System Functions
Arcsine 44 U P Test execution efficiency Methods tested are: Execution time.
Execution and result precision Taylor Series, Code aize.
of arcsinc function. Fike Semicircle, Result Data
System Functions
Arccosine 4.5 U P Test execution efficiency Methods tested arc: Execution time.
Execution and result precision Taylos Series, Code aize.
of arccosine function. Fike Semicircle, Reavlt Data
System Functions
Arctangent 4.6 u P Test execution efficiency Methods tested are: Execution time.
Execution and result precision Taylor Series, Code aize.
of arctangent function. Continued Fraction, Result Data
Hastings Algorithm,
System Functions
Square Root 4.7 u P Test execution efficicncy Methods tested are: Execution time,
Exccution : and result precision Newton-Raphson Code nize.
of square root function. Modificd Newton-Raphson Result Data
Log 10 4.8 U P Test execution cfficiency Methods tested are: Execution time.
Execution and result precision Taylor Series, Code size.
of log 10 function. Cody-Waite, Result Dats
System Functions
LogN 49 u P | Testexecution efficiency Methods tested are: Execution time.
Execution and result precision Taylor Series, Code size.
of log n function. Cody-Waite, Result Data
p System Functions
Natural Log 4.10 u P | Test execution efficiency Methods tested are: Execution time.
Execution and result precision Taylos Series, Code size.
of natural log function. Cody-Waite Result Data

SECTION 111
PURPOSE AND DESIGN

1. GENERAL REQUIREMENTS

The CAMP Ammonics Benchmark Suite meets the following general requirements:

o Utilizes CAMP parts in structures which simulate their actual use in typical user applications
o Utilizes test data modeled on typical user application data

o Helps assess Ada compilation capabilities, object code size, execution time, and output results

o Permits comparison between a variety of hosi/target combinations using different Ada
compiler/run-time systems

¢ Allows modification to meet specific needs of future users
¢ Exhibits high portability

¢ Is highly automated

a. Identifying Ada Compiler Inadequacies

One problem faced during the development of the CAMP parts was the inability of some Ada
compilers to process complex generic units. This is important because Ada generic units play a pivotal
role not only in the future development of reusable software, but also in the application of that software.
In order 1o identify Ada compiler inadequacies in the area of reusable software the CAMP benchmarks
provide Ada source code benchmarks which heavily utilize Ada generic units.

The compilation benchmarks of the Armonics Benchmark suite go beyond the limited scope of
testing in the official Ada Compiler Validation Capability (ACVC) tests. While the ACVC tests
demonstrate conformance to the Ada language specification, the effect of combining language features in
complex ways is not sufficiently addressed. The CAMP compilation benchmarks attempt to bridge the
gap between the objectives of the ACVC tests and the necessities of complex software applications. It is
believed at this point that very few ACVC-validated Ada compilers will, in fact, correctly handle the
CAMP compilation benchmarks.

b. Testing Calculation Accuracies

The CAMP parts, including those sclected as benchmarks, consist of portable Ada source code.
However. certain aspects of the run-timne performatce of the parts may still vary from system to system.
The accuracies of numeric compntations, for instance, are guaranteed by the Ada language definition to
meet the mininlum requirements specified in the software, but, this does not mean that different compiler
implementations of Ada will handle numeric computations in the same way. A combpiler is free both to
provide more accuracy than is requested by application software, and to support less accuracy based on
the limitations of the target machine. For this reason, the results of calculations performed by portable
software may not themselves be portable. Differences in numeric accuracies and range limits in Ada
systems introduce the possibility of unanticipated error in extensive calculations. This factor must be
considered by potential users of the CAMP parts as it would have to be by users of any software (or
hardware) product.

The two classes of execution benchmarks (polynomial and integrated execution) in the Ar-
monics Benchmark Suite address the issue of varying computational accuracies in different Ada systems.
They provide a standard means of generating data from the kinds of complex calculations involved in
armonics applications. '

¢. Testing Time and Space Performance

An iinportant performance factor in real-time embedded (RTE) environments is space and time
efficiency: Software must be kept small because hardware must be kept small in RTE systems; sofiware
must also operate efficiently because of the throughput requirements of real-time processing. The execu-
tion benchmarks of the Benchmark Suite support execution-time testing of CAMP parts as they operate
on various Ada compiler/target machine systems. Selected CAMP parts make up the benchmarks which
cover operations common to many armonics applications.

The size of the object code generated from the benchmarks reflects the qualities of the compiler,
the CAMP parts, and, to a lesser exient, the instruction set architecture of the application target machine.
Although RTE systems are being built with more and more memory, hardware capacity and its associated
costs are still the major limiting factor in increasing the computational power of embedded applications.
The execution benchmarks of the Benchmark Suite should facilitate the evaluation of Ada compiler/linker
systems based on object code size. Linker map data, obtained by compiling and linking the benchmarks,
can be utilized in judging an Ada system’s appropriateness to an embedded application in the light of
hardware capacity constraints.

2. COMPILATION BENCHMARKS

The purpose of the compilation benchmarks is to determine the compilability and linkability of a
large selection of CAMP parts integrated into typical armonics application groupings. Results from
compiling this series of benchmarks reflect on the ability of Ada compilers to correctly process CAMP v
parts. Since these parts are both reusable and armonics application-oriented, the validity of the
benchmarks extends strongly to these two areas.

a. Compilation Group 1

CAMRP parts utilized as benchmarks in Compilation Group 1 represent those which might be
needed in a north-pointing navigation implementation. The structure, components, and operating proce-
dure of this compilation benchmark follow.

il -
]
- 1 - =1 b -
Poly GPMath StdTrig i : % UnivConst
ConvFacion
- c5woera]
P i N BOT S WGST2
CVMA
A il "l'"
i I o
f.-""-_' -_-\—‘1 x rh
NPNav USER APPLICATION PROGRAM

pkg VaISqRt . Is new GPMath.Squere_Root ...
pkg AngVelSqRt Is new GPMath.Square_Root ...
pkg AccelSqRt Is new GPMath.Square_Root ...

pkg DistSqRt Is new GpMath.Square_Root ...

pkg VelVOpns is new CVMA Vector_
pkg AngVelVopns . is new CVMA.Vecior_
pkg AccelVOpns Is new CVMA.Vector_(
pkg DistVOpns Is new CVMA.Vector_t

fn CrossProd_AVV_VV s new CVMA.Cross_Product ...

fn CorAccel Is new NPNav.Compute_Coriolis_Acceleration
pkg RadOiCurv Is new NPNav.Radius_of_Curvature ...
pkg Latint Is new NPNav.Latitude_Integration ...

Figure 1. Compilation 1 Structure

B A
e Compilation structure: Figure 1 depicts the compilation structure. An Ada main procedure is
compiled in the context of several CAMP packages. The order of compilation for the packages
cotresponds to the partial ordering induced by the context clauses (with statements) of the packages ‘

10

and driver procedure. A command file in the tool set supplied with the benchmark suite gives a

? correct compilation order and compiles the compilation benchmarks automatically on VAX/VMS.
e Benchmark driver design:
- 1. Import North_Pointing_Navigation_Parts (CAMP part number P0O1), General_Purpose_

Math (P687), Coordinate_Vector_Matrix_Algebra (P681), Basic_Data_Types (P621),
WGS72_Ellipsoid_Metric_Data (P611), WGS72_Ellipsoid_Unitless_Data (P613), and
SYSTEM.

2. Begin main procedure definition.

3. Declare types and subtypes necessary for benchmark.

4. Instantiate generic units . fom imported packages.

5. Declare objects necessary for benchmark.

6. Invoke instantiated and derived subprograms (executable part of driver).
7. End main procedure definition.

e Data to be recorded:

1. Successful compilation;

2. Successful link;

3. Object code size (size of load module produced, if any);
4. CPU time consumed by the compiler.

® Methods for recording data: The source files for this compilation benchmark are compiled in one

group with the source files for the others. Error-free compilation is indicated by the compiler
through listings or by some other mechanism. CPU time consumption is noted when it is reported
by the compiler. The driver program is then linked and the size of the executable image recorded.

11

b. Compitation Group 2

‘CAMP parts utilized as benchmarks in Compilation Group 2 represent those which might be
peeded ‘in the waypoint steering of a missile application. The structure, components, and operating proce-
dure of this compilation benchmark follow.

o Compilation structure: Figure 2 depicts the compilation structure. The structure is similar to that
of Compilation Group 1.

o Benchmark driver design:

1. Import Waypoint_Steering (CAMP part number P661), General_Purpose_Math (P687),
Coordinate_Vector_Matrix_Algebra (P681), Basic_Data_Types (P621), WGS72_Ellipsoid_
Metric_Data (P611).

2. Begin main procedure definition.

3. Declare types and subtypes necessary for benchmark.
4. Instantiate generic units from imported packages.

5. Declare objects necessary for benchmark.

6. Invoke instantiated and derived subprograms.

7. End main procedure definition.

¢ Data to be recorded: As in compilation group 1

e Methods for recording data: As in compilation group 1

¢. Compilation Group 3

CAMP parts utilized as benchmarks in Compilation Group 3 represent those which might be
needed in a Kalman filter of a missile application. The structure, components, and operating procedure of
this compilation benchmark follow.

e Compilation structure: Figure 3 depicts the compilation structure. The structure is similar to that

of the other two compilation groups.

¢ Benchmark driver design:

1. Import Kalman_Filter_Complicated_H (CAMP part number P653) and Kalman_Filter_
Data_Types (P622).

2. Begin main procedure definition.
3. Declare types and subtypes necessary for benchmark.

4. Instantiate generic units from imported packages.

12

-

i

:
g

5 ¥
Pt |

| T Y ﬂ'\ ¥ 14—

Geo USER APPLICATION PROGRAM

pkg SCRSqRoot is new GPMath.Squsre Root ...
pkg VelSqRoot is new GPMath.Square Root ...
y pkg MSqRoot i new GPMath.Square Root ...

WPS pkg UnitVelVopns is new CVMA.Vector Opna ...
pkg VelVOpns is new CVMA.Vector Opns ...
fn CroasProd 1s new CMA.Crosa_Product ...

pkg SVO is new WPS.Steering Vector Uperationa ...

pkg CTEHOpns 1is new HPS.CroastuEk__and_ﬁeadinq_ﬂrror__0perationa 000

Figure 2. Cumpilation 2 Structure

o 4 [t 4
Z' i —

Poly GPMath GWA

KDT

KFCommon

/MU\‘ !

USER APPLICATION PROGRAM
KFComplicated

rkg ¥OT is new Kslman Filter Data Types ...

fn Kalman Gain is new Kalman Filter Complicated H Parts.
Compute_KaIman Gain ...

pkg FPlpdate is new Kslman_Gilter Complicated W Parta.
Kalman Update ...

Figure 3. Compilation 3 Structure

13

|

5. Invoke instantiated subprograms.
6. End main procedure definition.

o Data to be recordéd: As in the other two compilation groups

® Methods for recording data: As in the other two compilation groups

3. INTEGRATED EXECUTION BENCHMARKS

This section describes execution benchmarks based on CAMP parts, both integrated for use in a
typical missile application and in a unit-testing environment. The purpose of the integrated execution
‘benchmarks is to generate data on these CAMP parts and to afford an opportunity for determining code
sizes.

a. Integrated Execution |

In this section a benchmark based on a guidance computer implementation is described. Table
2 lists the CAMP parts used in this benchmark.

TABLE 2. CAMP PART BENCHMARKS OF INTEGRATED EXECUTION 1

TLCSCNAME PART NO. LLCSC NAMES
Waypoint Steering P661 Compute Tum Angle and Direction
Compute Tuming and Nonturning Distances
Distance to Current Waypoint
Steering Vector Operations with Arcsine
Turn Test Operations
Cross Track and Heading Ervor Operations

Signal Processing Parts P686 Absolute Limiter
Upper Lower Limiter

¢ Benchmark Driver Design: This benchmark is based on the guidance computer of a missile ap-
plication. The driver consists of several task bodies declared in the declaration section of a main

. procedure. These tasks are activated after the elaboration of the driver declaration section. A null
executable part of the driver runs to completion and awaits the termination of the tasks.

The tasks call the benchmark subprograms in the course of execution. A counter keeps track of
calls to a central message management task. When the counter value reaches a certain level, the
task is aborted and becomes abnormal. As the other tasks attempt to rendezvous with the aborted
task, they are forced to select a "terminate” entry. Then, these tasks also become abnorma\. When
the child tasks of the driver have all become abnormal, the driver terminates execution.

® Data to be recorded:

- Execution time

« Code sizes

14

- Result data

e Methods for recording data: Execution time is obtained directly from the benchmark driver. The
code sizes of the various CAMP parts may be taken from linker map files. Result data is also
generated directly by the benchmark.

e Benchmark inputs: Before execution, the benchmark driver requests data about the system: the

compiler used, the compiler host, and the compiler target. Then iteration values are requested to
tell the driver how many times to execute a benchmark subprogram. The benchmarks themselves
are supplied with hard-coded input data by the driver software. These inputs are coded as variables
to preserve the functionality of the benchmarks, which would not normally process static data.

e Benchmark correct outputs: A file containing standard output is supplied with the benchmark suite.

1t should be used for comparison with the actual benchmark output.

b. Integrated Execution 2

In this section a benchmark based on a navigation computer implementation is described. Table
3 lists the CAMP parts used as benchmarks.

TABLE 3. CAMP PART BENCHMARKS OF INTEGRATED EXECUTION 2

TLCSC NAME PART NO. LLCSC NAMES

Common Navigali‘m; Ir’aﬂ.s» s) POOI U;:da;e 6e‘loci(y . -
Compute Ground Velocity
Compute Gravitational Acceleration Sin Lat In

Wander Azimuth Navigation Parts POO2 Radius of Curvature
Compute East Velocity

Compute North Velocity

Compute Latitude using 2-Value Arctan
Compute Longitude using 2-Value Arctan
Compute Wander Azimuth Angle

Earth Rotation Rate

Earth Relative Navigation Rotation Rates
Compute Coriolis Acceleration

Total Platform Rotation Rate

Direction Cosine Matrix P644 CNE Operations
General Vector Matrix Algebra P682 Matrix Matrix Multiply Restricted
Ueneral Purpose Math Parts P687 Accumulator ‘ .

¢ Benchmark Driver Design: This set of three benchmark drivers is based on the navigation opera-
tions of a missile application. Each driver uses the same basic Ada linkage closure of units, sub-

stituting dummy code as appropriate. The first phase of the benchmarking run is done by the
driver, "Execute_Navigator_Test," which calls most of the benchmark subprograms. The remain-
ing benchmark subprograms are called by two drivers embedded in the executable part of the
Navigation Operations package.

¢ Data to be recorded:

15

1. Execution time
2. Code size
3. Result data

¢ Methods for recording data: As in Integrated Execution 1

© Benchmark inputs: As in Integrated Execution !

¢ Benchmark correct outputs: As in Integrated Execution 1

¢. Integrated Execution 3

In this subsection a benchmark based on the CAMP Kalman filter unit tests is described. Table
4 lists the CAMP parts used as benchmarks.

TABLE 4. CAMP PART BENCHMARKS OF INTEGRATED EXECUTION 3

TLCSC NAME PART NO. LLCSC NAMES

Kalman Filker Common Parts P65t Ervor Covariance Matrix Mlnajer
State Transition and Process Noisc Matrices Manager
Statc Transition Matrix Manager

Kalman Filker Compact H Parts P652 Compute Kalman Gains

Update Error Covariance Matrix

Update State Vector

Sequentially Update Covariance Matrix And State Vector
Kalman Update ~

Update Error Covariance Matrix General Form

Kalman Fiker Complicated H Parts P633 Compute Kalman Gain

Update Error Covasiance Malrix

Update State Vector

Sequentially Update Covariance Matrix And State Vector
Kalman Update

Update Error Covariance Matrix General Form

e Benchmark driver design: The three drivers of this benchmark are based on the unit tests of the
CAMP Kalman filter parts (P651, P652, and P653). Three main procedures import the three Kal-
man TLCSCs and call the benchmark subprograms within them.

e Data (o be recorded:

- Execution time
- Code size
- Result data

¢ Methods for recording data: As in the other two integrated execution benchmarks

¢ Benchmark inputs: As in the other two integrated execution benchmarks

¢ Benchmark correct outputs: As in the other two integrated execution benchmarks

16

4. POLYNOMIAL BENCHMARKS

The purpose of the polynomial benchmarks is to generate run-time data on the "slide rule” functions
of the CAMP Polynomials package and to provide an opportunity for collecting object code size data.
The run-time data on the benchmarks is produced by benchmark drivers and includes information both on
the time-consumption of the benchmarks and the numeric output they produce.

Table 5 presents a summary of the execution benchmarks which have been created from the CAMP
Polynomials parts. Entries marked "X" indicate a funciion and a numerical algorithm, For each math-
ematical function of the CAMP Polynomials package, all of the available algorithm implementations are
used as benchmarks. The floating point types of the arguments and results are varied according to the
number of terms in each algorithm’'s polynomial expansion. For example, an algorithm for a 5-term
polynomial expansion may be instantiated to use 6 floating-point digits while an algorithm for a 7-term
expansion is instantiated to use 9 digits.

TABLE 5. CAMP POLYNOMIAL PARTS EXECUTION BENCHMARKS

Modified Modified
Taylor | Taylor System Continued | Newton- | Newton- | Cody-

Function | Series | Series | Hastings | Chebyshev | Functions | Hart Fike Fraction | Raphson | Raphson | Waite
Sine X X X X X ’
Cosine e Sl Rl X g™
Tongent X | - »a ¥ [L
Arcaine X X X
Arccosine X X X a
Arctngent | X X X L E T o
Square root .] ‘ X X
Log 10 X X
2t ol Lt . | ST T R R 5
By ; a ! ol e | BT == | [- %*

Tables 6 through 12 present details of the polynomial function benchmarking. An "X" entry in a
table indicates an algorithm for computing a function and the number of terms of that algorithm to be
applied in the computation. Detail tables are not included for the various log functions shown in Table 5
since the log function testing is confined to the Polynomials Cody-Waite LLCSC. Term counts are not
applicable to the parts of this LLCSC.

e Benchmark driver design (for all polynomial benchmarks):

1. Import the CAMP Polynomials package (P688), Benchmarking_Tools package, and the
Polynomial_Benchmark package.

2. Define a floating point type of some precision.
3. Instantiate a Polynomials package LL.CSC for the defined type.

4. Instantiate the Polynomial_Benchmark package for the defined type.

17

TABLE 6. DETAIL OF SINE PERFORMANCE BENCHMARKS

Nember Modified
“of Taylor Taylor Haatings Chebyshev Syskem
Terms Series Series Algorithen Polymomial Functions
4 x x X
s X x x x B
i x x
7 x X
s x X
VAX ' ‘ x

5. Instantiate the Benchmark procedure (procedure named Benchmark) from the Polynomial
‘Benchmark package. Pass in a function subprogram as a generic actual parameter. This is
the subprogram to be benchmarked. Pass in an identity function from the Benchmarking _
Tools package as another generic actual parameter. This subprogram helps to compensate
for time costs associated with the design of the benchmark driver software. A new
Benchmark procedure instantiation is required for each subprogram benchmark from the
Polynomials package.

6. Request the system information. This includes the name of the compiler used to compile
the benchmark and the names of the host and target machines of the compiler. This data is
incorporated into the benchmark driver output to note the environment in which the
benchmark is being carried out. See "Benchmark Correct Outputs” below.

7. Request the number of iterations to use for each benchmark. Separate numbers are re-
quested: one for the number of iterations to use when timing the benchmark, the other for
.the iterations to use when collecting data from the benchmark.

8. Call the instantiated Benchmark procedures. These procedures time the benchmark sub-
program over a selected domain. They also provide .input and output data echoing for the
-benchmark subprogram over the argument domain.

9. End of benchmark definition.

e Benchmark inputs: System information and iteration values are supplied at run-time via the con-

sole.

o Benchmark correct outputs: The benchmarks produce time-consumption data as well as: echoed
system information (noted above), an Ada enumeration literal for the function being benchmarked
(e.g. SINE_R for radian sine), and ordered pairs of benchmark subprogram input and output. Ac-
curacy of the subprogram output is detcrmined by an analysis program supplied with the
Benchmark Suite. This program uses the VAX Ada Math library (MATH_LIB) to obtain truth
values. Absolute error in a benchmark subprogram is calculated as the difference between the result

of that subprogram and the truth value result for a given argument.?

o Data to be recorded:

1. Execution time for one call to each Ada subprogram benchmark
2. Code size

3. Arguments and benchmark function results for those arguments
4. System information collected at the beginning of the run

e Mecthods for recording data: Time-consumption data is recorded and reported automaticaily by the
benchmark drivers. Input data. output data. system information echoing, and an enumeration literal
representing the kind of function benchmarked are also reported automatically. Analyzed output is
obtained by passing the benchmark driver output through the analysis program Analyze. Code size
information is retrieved from linker maps.

TABLE 7. DETAIL OF COSINE PERFORMANCE BENCHMARKS

Number * Modified
of Taylor Taylor Hastings Hoart System
Terms Series Series Atgorithm Algorithm Functiom
4 X X X Y
s X X X E7 =
6 X » X r— g - Rl M B
7 X X
8 X X
VAX X

2Note: a small smouni of error is induced by conversion to and from text representations of floating-point numbers.

TABLE 8. DETAIL OF TANGENT PERFORMANCE BENCHMARKS

Nurber Modified
“of Taylor Taylor Haatings Continwed System
Terms Serien Series Algorithm Fraction Punctions
4 X X X
]] ™z 27 e
- - e - - .T - - —
6 X X
7 X X
8 X X _‘ X
9 X
10 X
1" X
7 vax o i) T

TABLE 9. DETAIL OF ARCSINE PERFORMANCE BENCHMARKS

Number
of Taylor Fike System
Terms Series Semicircle Functions
s X
6 X X
7 X
8 X
VAX X

TABLE 10. DETAIL OF ARCCOSINE PERFORMANCE BENCHMARKS

Number
of
Terms

s
6
7
8
VAX

Taylor
Series

X

X
X
X

Fike
Semicircle

5 3

System
FPunctions

20

TABLE 11. DETAIL OF ARCTANGENT PERFORMANCE BENCHMARKS

Number Altemaic Modified
of Taylor Taylor Hastings Haatings Continwed Sysiem
Terms Serien Series Algorithm Algorithm Fraction Fenctions
4 X X x
s il X RS I AT R
6 X X X Xl il X a
7 X x X X X
s X X b x | X
9 ' =R
10 R e
" P, S " X
VAX Lok 1= X

TABLE 12. DETAIL OF SQUARE ROOT PERFORMANCE

BENCHMARKING
Number Modified
of Newton- Newton- System
Terms Rapheon Raphson Functions
i r Y
5
= o i i
. 1
VAX X

21

SECTION IV
METHODOLOGY

The following paragraphs explain methods used in constructing the Armonics Benchmark Suite.
These sections discuss the overall design aspects of the suite as applied (o the problems of portability,
validity, and satomation of data collection.

1. PORTABILITY

Like the CAMP parts in general, the Benchmark Suite is highly portable, extending its usability and
repeatability to many different Ada systems. The CAMP parts selected as benchmarks use only Mil-
Std-1815A Ada code, as do the drivers which automate much of the benchmarking. Whenever optional
Ada features are applied (e.g., pragma PAGE), their effects are irrelevant and they may be freely ignored
by Ada compilers.

Input to and output from the benchmarks is limited to the use of the console, obviating file 1/0
implementation in the target system. While a filing system is desirable in order to retain output, the
console 1/O approach possesses greater versalility since many embedded computers (and hosted
debugger/simulators for the same) may not fully support file I/O. In such cases, the use of file I/O could
make the benchmarks difficult 10 transport to the kinds of architectures for which they are intended.
Moreover, the use of console 1/O does little to impede the retention of benchmark data on a filing sysiem.
The Ada language and most operating systems supply trivial mechanisms for redirecting console output
to files.

The 100l set which accompanies the benchmark suite is system-dependent and, as previously noted,
consists of VAX DCL command procedures and some non-portable Ada. Designed to automate the com-
pilation and execution of the benchmarks, this tool set supports two possible uses: For VAX/VMS users,
the tool set substantially automates benchmarking: for users of other sysiems, the tools are well
documented to permit a knowledgeable user to modify them or use them as a guide for performing the
benchmarks on his own system. A more detailed treatment of the tools is presented in Section V.

In order to automate the timing of benchmark executions in a portable way, the benchmark drivers
use facilities from the Ada CALENDAR package. Although differences in the implementation of this
package may exist between systems, these differences are minor enough that their effects can be min-
imized. The design of the benchmark drivers attempts to take advantage of similarities in Ada systems
supporting the CALENDAR package, while accounting for the differences that exist.

22

For example, the duration of a basic clock cycle (Ada SYSTEM.TICK) may vary from system to
system and may be quite large with respect (o the benchmark execution times. This requires a benchmark
driver 10 execute its benchmark many times in order to amrive at a reasonable one-call execution-time
&limme. By examining the Ada constant SYSTEM.TICK, the drivers are able to calculate the number of
benchmark executions necessary to arrive at a set timing accuracy. Conversely, given the number of
executions used in benchmarking, the drivers calculate an estimated accuracy on the time-consumption
data obtained from those executions.

2. COMPILATION BENCHMARK METHODS

The compilation benchmarks are valid tests of a compiler but do not apply to code generation. They
are intended to force an Ada compiler/linker system to fail when it contains errors in semantic analysis, in
library management, or in linkage editing.

To pass the compilation benchmark test, a compiler must process the associated Ada source code
without signaling any errors or ending abnormally. Limiled wamnings are allowed since the Ada language
allows a compiler some flexibility. For example, a compiler can wamn that it has made an optimization or
ignored an optional pragma. Warnings about program semantics, however, should not be generated, nor
should the compiler or linker encounter faltal errors in library management or load module generation.

The compilation benchmarks are perfomied by a DCL command procedure. This procedure must be
supplied with a compiler invocation command and a linker invocation command. It then proceeds to
apply these coinmands to the necessary Ada source files in a correct order. The procedure can be altered
or used as a guide when benchmarking on systems other than VAX/VMS.

The compilation benchmarks were validated by successfully compiling, linking, and running their
source code on a highly reliable Ada compiler/linker system. The system on which the validation was
performed is ACVC validated and produced no error messages or warnings in the course of compiling,
linking, and running the compilation benchmark source code.

3. EXECUTION BENCHMARK METHODS

a. Collecting Valid Timing Data

Drivers of the execution benchmarks collect time-consumption data through the use of the Ada
CALENDAR package. As noted above, the Ada constant SYSTEM.TICK varies between systems and is
usually quite large. Because of this the benchmarks are called repeatedly for the sake of timing accuracy.
The number of repetitions necessary to achicve microsecond accuracy is computed relative to
SYSTEM.TICK and reported by the benchmark drivers at run-time. This enables a user of the
Benchmark Suite to decide on the number of repetitions to actually use in benchmarking.

The computed number of repetitions is not used automatically since the resulting processing
time of the benchmark drivers might, in some cases, becomne prohibitively long. Large numbers of
repetitions on slow systems may consume a substantial amount of CPU time. Reducing the number of
repetitions proportionally reduces both the driver CPU-linie expense and, unfortunately, the accuracy of

23

the collected benchmark timings. The engineer who runs the benchmarks must, therefore, make a trade-
off with respect to timing accuracy and the use (or overuse) of computational resources.

In order to ensure valid timings of the benchmarks, a number of precautions are built into the
system. Code optimizations which might affect the integrity of the time-consumption data are selectively
defeated while other optimizations remain untouched. The methods used are similar to those used in
ACVC (ests lo prevent the compile-.ime removal of code which is being tested. These methods entail the
use of identity functions and tautological BOOLEAN functions to deprive the compiler of optimization
oppoﬂumnes Here, the goal of optimization suppression is essentially to "fool” the compiler by reducing
its available control-flow information at compile time.

For example, consider Figure 4, The identity function used in the first part of this Ada fragment
prevents a compiler from propagating the constant "5" into the timing loop in place of the variable
Argument. If this propagation were allowed to occur, the measured lime for the subprogram call could be
reduced. The reduction, however would be due to the static nature of the argument, a circumstance which
would not often occur if the subprogram were used in an application. This method of optimization
suppression is used in the integrated execution benchmarks where constants are often supplied as ar-
guments.

Argument := Identity(3); -- instead of “"Argument := §;*
Start_Timer;
for Index in Some _Range loop
Result := Benchmark Function (Argument);
end loop;
Stop_Timer;

Figure 4. 1dentity Function Defeats Constant Propagation

In a second example, Figure 5 shows the use of a tautological BOOLEAN function to prevent
the removal of a "dead" assignment. The function, Snow_Is_White, always returns the value TRUE,
although this is not known at compile time by the compiler (the body of the function is separate). Since
the flow of control is not known, the compiler cannot remove the assignment to the variable Gross_Time.
If this optimization were allowed, the compiler could move (he evaluation of the Gel_Elapsed_Time_
Since_Start function into the expression assigned to the variable Next_Time_Used. While such a move
would not alter the logical meaning of the program, a small effect on the time data would result. This
optimization suppression is used in the polynomial benchmarks.

1t should be noted that these techniques do not have the negative effect of inhibiling desired
optimizations. An Ada compiler is free to optimize all unprotected source code, including the code
bodies of the benchmarks themselves. 1t should also be noted, however, that these techniques are nol
fool-proof. Conceivably, a smart enough compiler/linker could outwit the optimization suppressions
described here.

24

Starct_Timer;

for Index in Some_Range loop
Argument := JIdentity (Argument); -- loop determines overhead

end loop;

if Smow_ls_White then -- balances "if" below.
Overhead Time := Get_Elapsed Time Since_Start;

ond Af;

Start_Timer;
for Index in Sowme_Range loop
Argument := Identity (Argmwment);
Result := Benchmark Function (Argument);

oend loop;

if Snow_Is White then -=- function always TRUE
Gross_Time := Get Elapsed Time Since_ Start; == removal prevented

end 1f;

Net_Time Used := Gross_Time - Overhead_Time;

Figure 5, Tautological Function Prevents Assignment Removal

Figure S also illustrates the collection of time-overhead to calibrate benchmark timings. Time
overheads are calculated at run-time and are used to offset the effects of the timing method and
benchmark code idiosyncracies. In the case of the polynomial benchmarks, the overheads are often
negligible, since none of these benchmarks require initialization.

On the other hand, the execution time overheads of the integrated execution benchmarks are
usually appreciable due to the parameter requirements of the benchmark subprograms. Many of the
higher-order CAMP parts used as integrated execution benchmarks have side effects and in-out
parameters. Each execution of such a benchmark, therefore, has a cumulative effect which may produce
an exception after many iterations. In order to counteract this effect, many of the integrated execution
benchmarks must be re-initialized prior to each call, a process which adds very significantly to overhead.
The resolution of this problem is transparent to the user and is accomplished by, as in the polynomial
benchmarks, implementing automatic overhead cotrection in the benchmark drivers.

Despite all of the precautions taken to ensure the validity of the time-consumption data, in-
accuracies may still occur. The benchmark drivers may overestimate benchmark execution times when
asynchronous events take place in the midst of timing. For example, if the benchmark drivers are
operated on a time-sharing operating system, they will compete with other processes. Since the CALEN-
DAR package operates on wall-clock time rather than CPU time consuniption, the benchmarks will ap-
pear to execute longer as their CPU time fraction is reduced.

25

Problems of this kind are beyond the control of the benchmark drivers. The effects of
asynchronous events on the benchmark timings may be minimized, but inaccuracies should nevertheless
be assumed: When asynchronous interference with the benchmarks is relatively uniform, the benchmark
execution times will lengthen proportionally to their synchronous execution times. Benchmarks which, by
themselves, take a relatively long time to run will, of course, show a relatively larger dilation in measured
execution time. While this effect may be undesirable, it czn usually be taken into account.

Moreover, timings which include asynchronous interference, typical of an operating environ-
ment, are quite valid. In such an environment, estimates based on the CPU time consumption alone
would be unrealistically low. The true throughput of an application is a function of both the application
executiont speed and the typical amount of asynchronous interference with which the application must
contend.

b. Collecting Benchmark Output Data

In addition to timing data, the polynomial benchmarks provide data for use in determining the
accuracy of Polynomials (CAMP package) function results. For each function benchmarked, both input
and output are reported at equal intervals over a selected argument domain. This permits the result ac-
curacies of the functions to be checked against appropriate truth values. For users with access to VAX
Ada, accuracy analysis and report generation can be accomplished automatically using a tool provided
with the Benchmark Suite. Other users may make use of this tool by modifying it as explained in section
V. It should be noted, however, that the accuracy analysis tool is not required in order to run the
benchmarks.

Armonics subsystem output data is also produced by the integrated execution benchmarks al-
though automatic checking of this data is not supported. Most of the output from these benchmarks is
produced in an ad hoc format which does not lend itself to automatic analysis. Nevertheless, the correct-
ness of the data may be checked by manual comparison with standard output files supplied with the
Benchmark Suite.

c. Automation of the Execution Benchmarks

The compilation and implementation of the execution benchmarks is highly automated in the
Amonics Benchmark Suite. Depending on the computer system used, most of the benchmarking, from
installation to report generation, may be accomplished in one or two man-days. In addition, once an
engineer has conformed the Benchmark Suite to run on a particular system, the work can be easily
repeated as necessary.

Compilation of the source code of the execution benchmarks is explained in detail in the next
section. The process involves the use of VAX/VMS command procedures as discussed above for the
compilation benchmarks. Once again, these command procedures may be used directly on a VAX,
modified on systems which support batch processing, or used as a guide on other systems.

The process of running the benchmarks is automated at two levels. First, the benchmarks them-
selves (i.e. the chosen CAMP parts) are automatically cxecuted by the portable Ada drivers in which they

26

are embedded. Thus, the engineer with the task of benchmarking is not required to supply an Ada driver
with which to execute the benchmarks. Second, at a higher level, the benchmark drivers are executed
using VAX DCL command procedures, written for inclusion with the Benchmark Suite. This level of
automation is, of course, subject to system dependencies.

27

SECTION V
USING THE BENCHMARKS

The following sections explain how to perform benchmarking using the CAMP Armonics
Benchmark Suite. For the purposes of discussion, the VAX/VMS environment is assumed. Comments
throughout suggest possible ways of adapting the Benchmark Suite to other environments.

Table 13 lists the DCL command procedure files which are supplied with the Benchmark Suite. On
a VAX, these command procedures automate both the compilation and the execution of the benchmark
drivers. On other systems the command procedures serve as a guide although they may be altered as
necessary (0 conform to other batch-processing systems.

1. LOGICAL DIRECTORIES

A system of three directories is recommended for compiling and executing the benchmark code in a
VAX/VMS environment. These directories are referred to within the Benchmark Suite command
procedures by the following VMS logical names:

¢ Compilation_Directory: The directory on which all compilation takes place.
¢ Tools: The directory which contains the Beachmark Suite command procedures, and
¢ Source: The directory which contains all of the Ada source code supplied with the benchmarks.

On systems which do not support the concept of logical names, the command procedures may be
altered to use the desired operating system names and batch job control style. Systems which do not
support the concept of directories at all may store all of the files (over 360 in number) in a single location
and alter the command procedures accordingly.

2. USING THE COMPILATION BENCHMARKS

The compilation benchmarks are simply files of Ada source code. Testing a compiler/linker system
with the benchmarks involves compiling the Ada code in a correct order and then linking the three
linkable main procedures. For VAX/VMS-hosted Ada compilers the process is automatic depending
slightly on the command syntax used to invoke the subject Ada compiler and linker.

The file called VAX_Compilation_Run.Com gives an example of how to perform the compilation
and linkage editing of the compilation benclimarks on VAX/VMS, using the VAX Ada compiler and (via
ACS) the VMS linker. The procedure sets its process to run in the logical Compilation_Directory and
then calls the command procedure Compilation_Benchmarks (o perform the compilation and the linkage
editing. On other systems, the Compilation_Benchmarks procedure gives a correct compilation order for
the Ada source files and may be used as a guide or altered s necessary.

28

TABLE 13. BENCHMARK SUITE COMMAND PROCEDURES

COMMAND PROCEDURL:

PURPOSE

ACT_COMPILATION_RUN

Callx .('.;ompildion_l)cnclnmrku to compile/link the compilation benchmarks on the ACT
compiler.

ANSI12DV & DV2ANSI

Rename files from ANSI to development names and reverse.

COMPILATION_BENCHMARKS

Compiles/links source code for the compilation benchmarks.

COMPILE_BENCHMARK_SUPPORT

Compiles support code for the execution benchmarks.

COMPILE_TOOLS

Compiles the clock function and [/O tools of the execution benchmarks.

INT_EXECI_COM_LINK

Compilesflinks Ada source code for integrated execution 1

INT_EXEC2_COM_LINK

Compiles/links Ada source code for integrated execution 2

INT_EXEC3_COM_LINK

Compiles/links Ada source code for integrated execution 3

MODIFIED_POLY6_COM_LINK

Compiles/links the 6-digit precision polynomial benchmarks on the TLD compier.

MODIFIED_POLY9_COM_LINK

Compiles/links the 9-digit precision polynomial benchmarks on the TLD compiler.

POLY6_COM_LINK

Compilesflinks the 6-digit precislon polynomial benchmarks.

POLY9_COM_LINK

Compiles/links the 9-digit precision polynomial benchmarks.

SYSTEM_COM_LINK

Compilesflinks code to run the System polynomial benchmark.

TLD_BENCHMARKS_COM_LINK

Calls other procedures to compile/link the benchmarks on the TLD compiler.

TLD_COMPILATION_RUN

Calls Compilation_Benchmarks to compile/link the compilation benchmarka on the TLD
compiler .

VAX_ANALYZE_COM_LINK

Seompilesllinkn the Analyze.Ada program. The program ia VAX/VMS and VAX Ads
pendent.

VAX_ANALYZE POLY

Uses Analyze.Ada to analyze all of the output from the polynomial benchmarks.

VAX_BENCHMARKS_COM_LINK

Calls other procedures to compile/link the beachmarks on the VAX Ada compiler.

VAX_COMPILATION_RUN

Calls Compilation_Benchmarks to compie/link the compilation benchmarks on the VAX
Ada compiler.

VAX_INT_EXECI_RUN

Runs integrated exccution | on the VAX,

VAX_INT_EXEC2_RUN

Runs integrated execution 2 on the VAX.

VAX_INT_EXEC)_RUN

Runs integrated execution 3 on the VAX.

VAX_POLY_RUN

Runs the polynomial benchmarks on the VAX.

29

3. COMPILING THE POLYNOMIAL AND INTEGRATED EXECUTION
BENCHMARKS

The two classes of executable benchmarks in the Armonics Benchmark Suite must be compiled and
linked prior (o benchmarking. On VAX/VMS, this process is automatic and is accomplished by the
VAX_Benchmarks Com_Link command procedure provided with the Benchmark Suite. This command
procedure establishes a process in the logical Compilation_Directory and then proceeds to call other
Benchmark Suite command procedures to accomplish the various compilation and linkage editing tasks.
The following command procedures are performed in order:

1.

Compile_Benchmark_Support: compiles the CAMP and 11th Missile software used in
benchmarking. This software contains the actual benchmarks (i.e., the CAMP parts selected as
benchmarks) as well as necessary support code. After compilation, this software comprises a
library of Ada units which provide a context for the subsequent compilation of the benchmark

drivers.

2. Compile_Tools: compiles packages of benchmarking tools used by the drivers. These packages

A

are fully portable and provide the drivers with necessary 1/O routines and other utilities.

. VAX_Analyze_Com_Link: compiles and links the tool, Analyze, used to analyze the output of

the polynomial benchmarks. This tool is dependent on VMS and VAX Ada as explained in
Section III. The Benchmark Suite program library dependency of this tool is limited to the pack-
age Benchmarking_Tools, compiled by the procedure, Compile_Tools, just discussed. This means
that the analysis tool may be independently compiled on VAX/VMS and VAX Ada and then used
to check the polynomial benchmark output from other systems.

. Poly6_Com_Link and Poly9_Com_Link: compile and link the polynomial benchmark drivers.

Two command procedures are used: one for the drivers using 6-digit Ada floating point numbers,
and one for the drivers using 9-digit numbers. Thus, Ada systems which do not support the
extended floating-point representations may still compile the lower-accuracy drivers without dif-
ficulty. It should be noted, however, that the Ada source code files of Poly9_Com_Link will not
correctly compile unless those of Poly6_Com_Link have already been compiled. Two packages
necessary to the polynomial benchmark drivers of both precisions are compiled in Poly6_Com_
Link.

. Int_Execl _Com_Link, Int_Exec2_Com_Link. and Int_Exec3_Com_Link: compile and link the

integrated execution benchmarks. Each of these command procedures compiles the support and
drivers necessary to run the respective integrated execution benchmarks.

30

6. System_Com_Link: rccompiles CAMP Polynomials support on the VAX then compiles and links
the System Driver benchmarks. This driver uses the VAX Ada math library as a set of
benchmarks. The Polynomials Systein_Functions LLCSC interfaces this driver to the math
library. This can be of interest to users of VAX/VMS and VAX Ada who must use the VAX Ada
"slide rule” functions, but who have to meet real-tiine constraints.

4. RUNNING THE EXECUTION BENCHMARKS

a. Polynomial Benchmark Execution

Once compiled and linked. the polynomial benchmark drivers may be run to produce data. As
has been discussed, these drivers send output to standard output which is generally the console. On most
systems supporting file /O, including VMS, the standard output can be redirected to files.

The command procedure VAX_Poly_Run is an example of running the polynomial benchmarks
in the VMS environment. Standard input is redefined to permit the drivers to request their Input from s
file. This file, created automatically by VAX_Poly_Run at benchmark time, contains data to supply the
benchmark drivers with the following:

e Compiler Name: the name of the compiler used 10 compile the polynomial drivers (becomes part of
the output data).

e Host Name: the name of the compiler host machine (becomes part of the output data).

e Target Name: the name of the target machine of the compiler and the machine on which the
benchmarks will run (becomes part of the output data).

e Number of timing itcrations: the number of times that a driver must call a function in order to

achieve a certain accuracy in calculating the time for a single call.

o Number of data iterations: the number of data values to use as arguments to a function of the
driver. This defines the number of argument-result pairs produced as output for each benchmark of
the driver,

.
Standard output, like standard input, is also redefined in the case of each benchmark driver to

channel output to files. This permits the subsequent analysis of the output by the analysis program
Analyze.

The analysis program is not portable from the VMS and VAX Ada environment due to use of
the VAX Math_Lib. Thus. use of the program on other systems is prohibited unless modifications are
made. The program may, howevcer, be modificd by interfacing it to another math library, as long as the
output from uew math library has greater than ninc Ada digits of precision. This is necessary since the
math library is used by the analysis program to check the results of the polynomial benchmarks, which
use up to nine digits of accuracy.

Running the analysis program is trivial and is demonstrated by the VAX_Analyze_Poly com-

3

mand procedure. A user simply executes the analysis program, Analyze, and provides it with the name of
a data file produced by running the polynomial benchmark drivers. The program prompts again to re-
quest the name of the file in which the analyzed output is to be placed. After the analysis of a file is
complete the program starts over, requesting the name of the next input file. If no file name is provided,
the program (eriminates.

It should be noted that, although the analysis program is non-portable, it may be used to analyze
polynomial benchmark data from diverse systems. A user with access to VAX/VMS and VAX Ada may
use the analysis program exclusively on that system to check the benchmark output from many other

systems.

b. Integrated Execution Benchmarks

Running the integrated execution benchmarks is similar to running the polynomial benchmarks.
The command procedures VAX_Int_Execl_Run, VAX Int_Exec2_Run, and VAX_Int_Exec3_Run
automatically execute the three integrated execution benchmark groups on VMS. These procedures
provide the input data required by the drivers while the output of the drivers is trapped in log files by
VMS.

Like the polynomial benchmark drivers, the integrated execution benchmark drivers use only
standard I/O. The input data required by each of the drivers is as follows:

e Compiler Name: the name of the compiler used to compile the polynomial drivers (becomes part of
the output data).

¢ Host Name: the name of the compiler host machine (becomes part of the output data).

® Target Name: the name of the target machinc of the compiler and the machine on which the
benchmatis will run (becomes part of the output data).

o Numbers of Timing Iterations: a series of numbers telling the driver how many times to execute
corresponding benchmarks. Unlike the polynomial benchmarks, the different integrated execution
benchmarks within a driver do not all have to be executed the same number of times. Also,
overhead timing iterations vary from benchmark to benchmark. The command procedures which
run the integrated execution benchmarks on VAX/VMS may be consulted for more details.

The output generated by running the integrated execution benchmarks consists of two types of
data:
I. Result data, which represents the results of the calculations performed by the subprograms chosen
as benchmarks and,

2. A rable of timing data showing the time uscd for a single call to each benchmark subprogram.

n

Output data of the first type is to be used in checking the correctness of the data processing of a
tested system. Such output should closely maich the corresponding standard data supplied with the
Benchmark Suite. The second type of data represents the run-time efficiency of the tested system and is
expected to vary widely from system (o system.

Although both kinds of dalta are produced with each run of an integrated execution benchmark
driver, the correctuess of the two types is mutually exclusive in a given run. A run which provides
accurate run-time efficiency data is, by design, likely to produce poor data for correctness checking. The
reverse is also true. For this reason, each integrated execution benchmark must be run twice, once for
liming purposes and once to obtain data for comparison to supplied standard data.

Wien performing the timing run, the number of iterations for each benchmark subprogram
(specified by the user at run-time) must be high in order to compensate for the generally low accuracy of
the clock functions. Each subprogram will then be called many times, the time for one call being cal-
culated by simple division. To aid the user, each benchmark driver reports the number of iterations
necessary (o obtain microsecond accuracy. Also, whatever number the user specifies, the resultant table
of timings will show estimates of the accuracy actually obtained.

On the other hand, performing the benchmark run for correciness of data processing requires
that the benchmark subprograms be executed only once. Thus, the user must specify that only one itera-
tion be used for each subprogram. More than one call (o a given subprogram can alter the output data,
making any comparison to the standard invalid. This is due to the use of in-out parameters and occasional
side effects in the benchmark subprograms. Results, in these cases, tend to accumulate changes from call
to call as previously discussed.

33/34 (Blank)

APPENDIX A
ARMONICS BENCHMARK SUITE

This appendix presents a summary of the data which CAMP obtained from the Armonics
Benchmark Suite. In some cases the data represents performance parameters of the selected CAMP parts
as they operate on a 32-bit minicomputer. However, when possible, data reflecting the operation of the
benchmarks in a Mil-Std-1750A microprocessor environment has been inciuded.

The compilation benchmark data underscores some of the difficulties a software engineer may
experience when selecting or applying an Ada compiler. It was found that many validated Ada compilers
currently lack the ability to handle complex source code. The problem is essentially one of relative
reliability: Some Ada compilers seem to work all of the time; most Ada compilers seem to work some of
the time.

The polynomial benchmarks, which measure run-time parameters of Polynomials scientific
functions, were executed successfully in both the 32-bit minicomputer and 1750A microprocessor en-
vironments. This supplied us with data enabling us to draw some useful conclusions about the CAMP
parts, the Ada language, and the tested compiler/processor pairs. Finally, performance data from the
integrated execution benchmarks serves to validate these benchmarks. At the time of this writing these
benchmarks could not be run in any but the 32-bit environment due to errors in compilation to the 1750A
target machine.

1. COMPILATION BENCHMARK DATA

The compilation benchmarks were used to test four separate Ada Compiler/Linker systems. One
compiler, Compiler A, was self-targeted and served, because of its demonstrated reliability, as the valida-
tion compiler for the benchmarks. The other three compilers, B, C, and D, were recently validated
cross-compilers to a 1750A target.

Compiler A succeeded in compiling all of the source code of the compilation benchmarks. It
produced no warnings and no errors. The accompanying linker subsequently produced load modules with
no difficulties. As a final step, the load modules were run on the host system to see if they would produce
run-time errors. On this host, no errors occurred although this implies no guarantees about other systems.

Compiler B succeeded in compiling all of the source code correctly except the driver of the Kalman
filter compilation benchmark, Compilation 3. Numerous warnings were issued in the course of compila-
tion. The vast majority of these wamings concerned optimizations which could have been made in the
Ada code but, for reasons of readability, were not. The compiler had performed an optimization that was
not made by the programmer at the source code level. The warnings produced by Compiler B were
justified with the exception of two concerning program semantics.

In compiling the Kalman filter driver. Compiler B evidently lost track of a necessary file. Object
code was still generated but it was probably erroneous. Nevertheless, all three drivers were successfully
linked, albeit with one wamning. The linker of Compiler B produced the required load modules and did

pot fail to note that the Kalman filter driver had compiled with errors. The load modules were next
loaded into the MDAC-Huntington Beach Mil-Std-1750A Simulator and their sizes were recorded.

Compiler C compiled all of the support packages of the compilation benchmarks but failed to com-
pile any of the three drivers. In all three cases, the compiler ended abnormally in a late phase of process-
ing. For this reason, Compiler C’s linker could not be fairly tested.

Compiler D had been validated very recently and appeared to be having many of the problems
associated with any new compiler. It failed to compile even the support packages of the compilation
benchmarks. After successfully compiling the first three Ada files, the compiler falsely diagnosed the
fourth as having semantic errors. Continuing through the source code, the compiler found numerous
other "errors” in the error-free code.

A summary of the data collected on Compilers A, B, and C is presented in Table A-1. Insufficient
data was obtained from Compiler D to justify its inclusion in the table. It should be noted that the object
code size data for Compiler A may be unrealistically small. The size mentioned in the table does not
include any run-time system services which may be required.

TABLE A-1. COMPILATION BENCHMARK DATA

COMPILER/ SUCCESSFUL SUCCESSFUL TOTAL CPU TOTAL OBJECT
LINKER COMPILE? LINK? TIME (secs.) CODE SIZE
A Yea Yes 105656 62K bytes
B M.osl Yes . 22:4.2.33 i 122K bytes
c No NA 3000007 RS,

2. POLYNOMIAL BENCHMARK DATA

The polynomial benchmarks were used to test two subject systems. System A consisted of Compiler
A, above, and the host/target system of that compiler. System B consisted of Compiler B and the MDAC
Huntington Beach Mil-Std-1750A simulator, which simulates a 1750A bare machine. Running the
benchmarks on System A produced performance data on the CAMP Polynomials package parts as they
run on a 32-bit time-sharing minicomputer. System B produced data for the same parts as they run on a
20 MHz 1750A microprocessor. Compilers C and D, above, failed to compile the polynomial
benchmarks.

For each function of the Polynomials package, size data was obtained on System B. It was felt that
1750A size data was relevant to armonics applications. Moreover, this data was readily available in the
linkage map files produced by the linker of System B. On the other hand, size data on the 32-bit system
was less meaningful and was excluded. System A makes extensive use of built-in service routines which
are not counted in load size; on a bare machine, system services are part of the load module or run-time
system and are counted — a fact which casts doubt on the validity of code size estimates. Table A-2 gives
the size data for functions of the Polynomials package on System B,

Time-consumption and mathematical precision data on the polynomial functions was collected for
both systems A and B. This data is summarized in Figures A-1 to A-12. Each graph plots the execution

36

TABLE A.2. SYSTEM B POLYNOMIALS SIZES

TLCSC Name TLCSC Name TLCSC Name
LLCSC Hame Slze (words) LLCSC Name Size (worda) LLCSC Name Size (words)
Unlt Hame Hex. Dec. Unit Name Hex. Dec. Unit Name Hex. Dec.
Chebyshev Mod Newton Raphson Tsylor Serles {(cont.})
Radlan Operatlons sqrt 61 9 Degree Operatlons
Sin R STern 50 93]tewton_Raphson 5in B STern c Ho
Degree_Operatlons sqrt 6c 108 Sin D _6Term ic 76
Sin D 5Term 50 9 Taylor Serles SIn_b_1Tern 50 80
Semicircle Operatlions Radlan_Operatlons Sin D 8Term 54 84
Sin 8 Sterm SA 90 sin R 4Tern k] 52 Cos D 5Term o 157
Cody Walte SinR_5Term 37 55 Cos_D_6Term 5 8
Natural Log Sin R 6Tern A 58 Cos D 7Tern 56 86
Hat_Log 59 89 Sin_R_ITerm I 6 Cos_D_8Term L1 I 1]
Base N Sln_R_8Term o 6l Tan D 8Term 36 54
log ¥ 12 18 Cos_R_4Tern F 79 Hod SIn D 4Tem 76 118
Cont.1nued_Fractlons Cos_ R 5Term 52 82 Hod sln D 5Term m 126
Radlan Operations Cos R_6Term 55 85 Mod Sin D 6Tern 86 1M
Tan R k)| 49 Coa_R_7Temm 50 1] Hod_Sin D TTerm e 142
Arctan R 36 54 Cos R_8Term 5B 91 Mod Sin D BTem 96 150
Fike Tan R_6Tern 2B LE) Mod Cos D 4Term M 116
Semicircle Operatlons Arcsin_R_5Term 2 N Mod Cos D STerm ¢ 124
Arcsin 8 dTerm 60 96 Arcsin R_6Term 26 38 Mod Cos D 6Term 8 132
Arcsin S 5Term 64 100 Arcaln R_ITerm P2 S Mod Cos D 7Term 8¢ Mo
Arcsin_S 6Term 68 104 Arcsin R 8Tern & 46 Mod Cos_D_ATerm " 140
Arccos_S_4Tern 62 98 Arcoa R STern 29 A Mod Tsn D dTerm u 20
Arccos_S_5Term 66 102 Arcos R_6Term 20 45 Mod Tsn_D_S5Term 1" 20
Areco: S 6Term 6A 106 Arcos R ITerm N 19 Hod_Tsn D_6Tern L 20
Hart Arcoa R _BTerm 35 53 Mod_Tan D 7Term 14 20
Radlan Operatlons Arctan R 4Tern k)| (1] Mod™ | Tan_| D) 8Term 14 20
Cos R 5Term 52 82 Arctan R_5Term 35 53
Degree Operatlons Arctan R_6Temm - 39 57
Cos D 5Term 51 81 Arctan R_ITern kD)) 61
Hastings ~ Arctsn R_0Term ()] 65
Rad.lan _Operatlons Alt_Arctan R 4Term 14 30
Sin R dTerm k1 54 Alt_Arctan_R_5Term 22 kL]
Sin R 5Term A 58 Alt_Arctan R_6Term 26 38
Cos R_4Term b 6l Alt_Arctan R 7Term a2
Cos R_5Term 1 €5 Alt_Arctan_R_8Term 2e 16
Tan R 4Term 25 37 tMod_S1n_R_Term 6B 107
‘l‘an P 5Term 25 N Mod_SIn R 5Term 7 1ns
Arctan R 6Term 26 kL] Mod_Sin R_ "6Term B 12
Arctan_R_1Term 2 42 Mod_Sin R_TTerm 8 131
Arctan_R_8Tern 2E 46 Mod_Sin R 8Term 8 139
Mod Arctan R_6Term ic 76 Mod_Cos_R_4Term 76 118
Mod Arctan R TTerm 50 80 Mod_Coa R_S5Term € 126
Hod Arctan R BTerm 54 84 Mod Cos R 6‘I‘erm 86 13
Degree Operatlcons Mod_Coa R_TTerm e 142
Sin D_4Term 36 54 Mod_Cos R_8Term 96 150
Sin D 5Term KLY Mod_Tan_R_4Term H 2
Cos D_4Term k] 61 Mod_Tan R 5Term 1 20
Cos D 5Term 11 6 Mod_Tan_R_6Term 20
Tan D _4Term 2] 35 Mod Tan R_7Term 1 20
Tan D 5Term 23 35 Mod_Tan R_8Term u 2

The domain specifications are of particular importance since a given function, apparently superior in
terms of performance, may nevertheless operate correctly only over a small domain. This is, for example,
true in e case of the radian arctangent benchmarks (Figures A-6 and A-12) where the "Alt Taylor"
However, referring to the domain specification, it becomes
apparent that the "Alt Taylor” method only provides the indicated performance over the domain [0.0, 0.4].
Other functions provide a more acceptable domain at a slightly higher throughput cost.

The absence of separate data for six and nine digit instantiations in the figures based on System B is
due to the fact that compiler B always uses 1750A extended precision (approximately 9 decimal digits) to
Identical object code is used for each instantiation of a

method appears o be the best performer.

represent any generic floating-point object.

¥

time of a function against the absolute precision of that function’s results. Both the time and precision
data are taken over the function argument domains listed at the bottom of each figure.

geaeric floating-point subprogram and, indeed, compiler B shares one object code instruction section
among all instantiations of a given generic. The use of this "single copy” method implies that the running
times of different instaniiations of the same generic subprogram will be identical, regardless of the preci-
sion of the floating-point variables. Thus, the nine-digit worst case data applies for both six and nine-
digit instantiations.
3. INTEGRATED EXECUTION BENCHMARK DATA

The integrated execution benchmarks, which integrate numerous CAMP parts, were run on the 32-

bit minicomputer (System A above, Tables A-3, A4, and A-5).

Standard output data for these benchmarks is supplied in the form of files accompanying the
benchmark suite. This data can be used to verify that a compiler and target machine combination produce
correct output for the benchmarks. The data is not reproduced here because it is quite lengthy and is not
formatted for inclusion in a document,

Time-consumption data on the integrated execution benchmarks was automatically collected at run-
time by the benchmark drivers. This data is presented in Tables A-3, A-4, and A-5.

R

160 5
150
140
130
120
110
100
90

70
60

Execution
Time tys)

Minimum Digits of Accurscy

Numbers shown Indicate thommb«ol«nm used In
the polynomhl sxpensk The fu over
which thie date epplies e [-pV2, pl/2).

Figure A-1. Radian Sine on System A

Execution
Time (ye.)

160

140
130
120
110
100
90
80
70
60

Numbers shown indicate the number of terme used In
the polynomie! sxpansion. The function domain over
which thie data applies e [0, pi)

Figure A-2. Radian Cosine on System A

350 1

300 |

Heotinge

250 |-
200 _
150 |

o dighs ¢
m dighe

100 _|

Minimum Digite of Accurscy

W b T fndl the b ol terme used In
the polynomiel exp) over
which this dete opﬂln te [, 1)

Figure A-3. Radian Tangent on System A

39

240 WY
200
160
120 i
80
40 [i e digite 8
u dighe ®
— [N SR T IO T DU T |
X
oo N I N O N
34567891
Minimum Digits of Accurscy

Numbers shown indicste the number of terme used In
the polynomlisl sxpeneion. The function domeine over
which thess dets apply ere ae follows:

Taylor Redien: [044, 0.44)
Fike 1 Semicircle: [-08, 0.6]
Fike 2 Semicircle: [1.0, 1.0]

Where Fike 1 uses the Newton-Repheon equere root end
Fke 2 uses the Modified Newton-Repheon squere root.

Figure A-4. Arcsine on System A

240

160
120
80

o digits 6
mdigits ©

40

Time (ys.)

Numbers shown Indicats the number of terme used In
the polynomhl sxpansion. The function domalne over
which these dsta apply are se follows:

Teylor Redien: [-048, 0.46)
Fike 1 Semicircle: (0.6, 0.9)
Fike 2 Semicircle: (1.0, 1.0]

Where Fike 1 uese the Newlon-Rapheon squere root snd
Fike 2 ueee the Modified Newton-Repheon equere root.

Figure A-5. Arccosine on System A

o dighs ¢
u digite @

Il [1 1 [

L1 1
HERERRRR
3456782910

Minimum Digite of Accurscy

Numbers shown indicete the number of terme veed In
the polynomisl sxpeneion. The function domaeins over
which these dete spply ere as foflows:

Taylor: [2.63, ©50.0]
AR Taylor: .0,
Hestings: 10,

Mod Hestinge:

0.0,
Continued Fraction: [0.0, 0.7167)

Figure A-6. Radian Arctangent on System A

440

5 W Chebyshev
400
360
s M
320 r
7M7)
2801 i
240 ¥ Heslings
¥ 4
PER B W N B N N
- I
345678910

Minimum Diglle of Accurscy

Numbers shown indicate the number of terms used In
"n:olynomlﬂ expansion. The function domein over
this dats spplies le [pl/2, pl/2].

Figure A-7. Radian Sine on System B

40

440 -}
400 -
360
320 |
280 |-
240 _| S
| | (™)
Execution °
B | earaer o

Minimum Digits of Accurscy

Numbers shown indicate the number of terme used
the polynomisl sxpension. The function domein over
which this deta epplies Is [0, pi].

Figure A-8. Radian Cosine on System B

800 Contton. 3 11(€A
e
700
2 (R, & om
600 "™ 8 (cm
L] [}
500 Hastings
400
B
300 B Taylor
i L i i L L [[|
“";:‘w'“'” T L
3456782910

Minimum Digits of Accuracy

Numbers shown Indicate the number of terms used In
the polynomisi expsnsion. The function domein over
which this date spplies s -1, 1).

Figure A-9. Radian Tangent on System B

600 -
4 .ﬂ/'-:'/;
500 4 ¢
I =
400 1 ¢ ™°*
300 |
uijr)
200 | :/:/27
—t Teylor
100 _|
—-I L L (1 L L L L
Execution
- N
3456782910

Minimum Diglts of Accuracy

Numbon shown indicste the number of terms ueed in

the p: is| sxpensl The function domasins over
which thees date apply sre ss follows:
Taylor Redien: [-0.44, 044]

Fike 1 Semicircls: [-0.6, 0.6]
Fike 2 Semicircls: {-1.0, 1.0]

Where Fike 1 uses the Newlon-Rspheon squere root snd
Fike 2 uses the Modified Newton-Rephson squere root

Figure A-10. Arcsine on System B

Fike 1
L
— 5
500 4+ ¢
) '/:_/'/,_:—-2:
400 L 4 Fike
300 - :
=IF 7
200
Teylor
100
—-1 [T T LN VY -
Beston T [T 1 |1
345678910

Minimum Digits of Accurscy

Numbon ohovm lndc-h the mnmbor of Ier'lI. used in
the p The h ins ovar
which these d-h lppOy asre se follows:

Teylor Redien: [-0468, 0.48]
Fike 1 Ssmicircle: {-0.6, 0.6]
Fike 2 Samlcircle: {-1.0, 1.0]

Where Fike 1 uses the Newton-Raphson square root and
Fike 2 uses the Modified Newton-Repheon square root.

Figure A-11. Arccosine on System B

12001
Continued
T Fraction
1000 e
T 10
800 /{l
= [
600 -
400 —{- ;" od Hestings
1 ; oL = ' :‘1-.“‘-
il =
- SERET T FE
345678910
Minimum Digits of Accurecy

Numbers shown indicats the number ot terms used In
ths polynomisi sxpsnsion. The function domasins over
which these data apply are as follows:

Teylor: {2.63, 30.0]
At Teylor: (0.0, 0.4)
Hastings: 1.0, 1.0
Mod Hestings: {0.0, 80.0)
Continued Fraction: (0.0, 0.7187)

Figure A-12. Radian Arctangent on System B

41

TABLE A-3. TIMING OF INTEGRATED EXECUTION 1

Integrated Execution 1 on VAX

TLCSC Name {some names abbreviated)

Time (microsecs)

LICSC Name
Unit Name

Waypoint_Steering (P661)
Compute Turn Angle And Direction
Compute_Turning And Nonturning Dist
Distance To Current Waypoint

Steering_Vector_Operations_W_Arcsin
Initialize
Update

Turn_Test Operations
Stop_Test
Start_Test

Signal Processing (P686)
Absolute Limiter
Limit

Upper_Lower Limiter
Update Limits
Limits

Per Call Variation
391.0 0
173.0 0
409.0 0

5210.0 5
2623.0 10
62.0 2
61.0 0
43.0 0
15.0 0
57.0 0

42

TABLE A-4. TIMING OF INTEGRATED EXECUTION 2

Integrated Execution 2 on VAX

TLCSC Name (some names abbreviated) Time (microsecs)
LLCSC Name
Unit Name Per Call Variation
Common_Navigation Parts (P001)
Update Velocity
Reinitialize 34.0 2
Current Velocity 51.0 2
Update
Compute Ground Velocity §09.0 2
Compute_Gravitational Accel Sin_Lat_In 332.0 2
Wander Azimuth Nav:.gat:.on Parts (P002)
Earth Rotation Rate
Compute 338.0 2
Earth Relative Navigation Rotat_Rates
Compute 414.0 0
Total Platform Rotation_Rate 151.0 0
Compute_Latitude Using Two_Val_Arctan 623.0 0
Compute ! Long:.tude Using Two val _Arctan 430.0 0
Compute East Velocity With sm Cos 231.0 2
Compute_North_Velocity With Sm Cos 232.0 2
Comput e_Conol:.s__Accele:at:.on 769.0 2
Compute_Wand Azim Angle Two Val Arctan 432.0 0
Compute_Curvatures _ 820.0 0
Dxrectxon Cosine Matrix {(P644)
CNE Ope:atxons
Compute First Row CNE_From Ortho 199.0 0
CNE_ In:.t:.ahzed From Refe:ence 1647.0 2
Perform Rect Integrat:.on Of_CNE 664.0 0
Reorthonormalize CNE 1698.0 2
Aligned CNE Matrix - 1178.0 2
General Vector_| Matrix Algeb:a (P682)
Matrix_| Matrix Multiply Restricted 3861.0 0
General Purpose Math Parts (P687)
Accumulator
Accumulate 19.0 2

TABLE A-S5. TIMING OF INTEGRATED EXECUTION 3

Integrated Execution 3 on VAX

TLCSC Name (some names abbreviated) Time (microsecs)
LLCSC Name
Unit Name Per Call Variation
Kalman Filter Common Parts (P651)
State Transition And Proc_Noise Mat Mgr
Initialize 1603.0 1
Propagate 187290.0 10
Get_Current 113.0 1
Propagated Phi 119.0 1
Error_Covariance Matrix Manager
Initialize 69.0 1
Propagate 149540.0 10
P 119.0 1
State Transition Matrix Manager
Initialize ~ . 1547.0 1
Propagated Phi 117.0 1
Propagate 28073.0 10
Kalman Filter Compact H Parts (P652)
Compute Kalman Gains 10978.0 2
Update Error Covariance Matrix 16267.0 2
Update State Vector 6360.0 2
Seq Update Cov_Matrix And State Vector
Update 67897.0 2
Kalman Update
Update 233355.0 2
Update Error_Cov_Matrix General Form 73222.0 2
Kalman Filter Complicated H Parts (P653)
Compute_Kalman Gains 24687.0 1
Update Error_Covariance Matrix 60033.0 2
Update_State_Vector 12756.0 1
Seq Update_Cov_Matrix And State Vector
Update 192150.0 10
Kalman Update
Update 361139.0 10
Update Error_Cov_Matrix General Form 215098.0 10

B T T

APPENDIX B
ADA SOURCE CODE INVENTORY

The following tables comprise an inventory of all Ada source code used in the CAMP Armonics
Benchmark Suite. In addition. the tables provide a cross-reference from the development name of a file
to the ANSI name assigned to that file for transportation to other operating systems.

45

TABLE B-1. ADA SOURCE CODE INVENTORY

(1 of 10)
Amonics Benchmark Inventory and Cross-Reference
Development Name] ~ ANSI Name
 CAMP Source Code '

001_000_COMMON_NAV_ADA A001000.ADA
001_001_COMMON_NAV.ADA A001001.ADA
001_100_ALTITUDE_INTEGRATION.ADA A001100.ADA
001_200_COMP_GROUND_VEL.ADA A001200.ADA
001_300_COMP_GRAV_ACCEL_LAT_IN.ADA A001300.ADA
001_400_COMP_GRAV_ACCEL_SIN_LAT_IN.ADA AOD1400.ADA
001_500_COMP_HEADING.ADA A001500.ADA
001_600_UPDATE_VELOCITY.ADA AOO1600.ADA
001_700_SCALAR_VELOCTTY.ADA ~ AGOIT00.ADA
001_800_COMP_ROTATION_INCR.ADA " AOOIS00.ADA
002_000_WA_NAV_ADA ' T AG02000ADA
002_001_WA_NAV.ADA s " AG02001.ADA
002_100_EAST_VELOCITY.ADA A002100.ADA
002_200_NORTH_VELOCITY.ADA ~ A002200.ADA
002_300_EARTH_REL_HOR_VELS.ADA A002300.ADA
002_400_TOTAL_ANGULAR_VEL.ADA A002400.ADA
002_300_CORIOLIS_ACCEL.ADA A002500.ADA
002_600_CORIOLIS_ACCEL_TOT_RATES.ADA "~ A002600.ADA
002_700_RAD_OF_CURV.ADA A002700.ADA
002_800_TOT_PLATFORM_ROT_RATE.ADA A002800.ADA
002_900_EARTH_ROT_RATE.ADA * AGO2900.ADA
002_A00_EARTH_REL_ROT_RATE.ADA " AG2A00ADA
002_B00_LATITUDE.ADA A002B00.ADA
002_C00_LATITUDE_USING_ATAN.ADA AOG2C00.ADA
002_D00_LONGITUDE.ADA AD02DO00.ADA
002_E00_WANDER_ANGLE.ADA AO02E00.ADA
002_FO0_EAST_VEL_SIN_COS.ADA AG02F00.ADA
002_G00_NORTH_VEL_SIN_COS.ADA AG02GO0.ADA
002_H00_EARTH_REL_HOR_VELS_SIN_COS.ADA AGO2HO0.ADA
002_100_LATITUDE_USING_ATAN2.ADA A002100.ADA
002_J00_ONGITUDE_USING_ATAN2.ADA A002100.ADA
002_K00_W ANDER_ANGLE_USING_ATAN2.ADA AO02K00.ADA
611_000_WGST2_METRIC_ADA A611000.ADA
613_000_WGST2_UNITLESS_ADA A613000.ADA
£14_000_CONVERSION_FACTORS_.ADA A614000.ADA
615_000_UNIVERSAL_CONSTANTS_ ADA A615000.ADA
621_000_BDT_.ADA © A621000.ADA

46

TABLE B-1. ADA SOURCE CODE INVENTORY (2 OF 10)

Ammonics Benchmark Inventory and Cross-Reference

Development Name 'ANSI Name
621_001_BDT.ADA "~ A621001.ADA
622_000_KDT_.ADA A622000.ADA
622_001_KDT.ADA A622001.ADA
634_000_CLOCK_HANDLER _ADA A634000.ADA
634_001_CLOCK_HANDLER ADA A634001.ADA
644_000_DCM_.ADA A644000 ADA
644_001_DCM.ADA A644001.ADA
651_000_KALMAN_COMMON_.ADA A651000.ADA
651_001_KALMAN_COMMON.ADA A651001.ADA
651_100_PHI_Q_MANAGER.ADA A631100.ADA
651_200_P_MANAGER.ADA 'A651200.ADA
651_300_PHI_MANAGER.ADA A651300.ADA
652_000_KALMAN_COMPACT_.ADA A652000.ADA
652_001_KALMAN_COMPACT.ADA © A6S2001.ADA
652_100_CKGADA A652100.ADA
652_200_UPDATE_P.ADA A652200.ADA
652_300_UPDATE_X.ADA A652300 ADA
652_400_UPDATE_P_AND_X.ADA A652400.ADA
652_500_KALMAN_UPDATE.ADA A652500.ADA
652_600_UPDATE_P_GENERAL.ADA A652600.ADA
653_000_KALMAN_COMPLICATED_.ADA " A653000.ADA
653_001_KALMAN_COMPLICATED.ADA A653001.ADA
653_100_CKG.ADA "~ A6S3100.ADA
653_200_UPDATE_P.ADA T A653200.ADA
653_300_UPDATE_X.ADA " A653300.ADA
653_400_UPDATE_P_AND_X.ADA A653400.ADA
653_S00_KALMAN_UPDATE.ADA A653500.ADA
653_600_UPDATE_P_GENERAL.ADA A653600.ADA
661_000_WAYPOINT_STEERING_ADA A661000.ADA
661_001_WAYPOINT_STEERING.ADA " AG61001.ADA

| 661_300_STEERING_VECTOR_OPNS.ADA T A661300.ADA
661_310_INTTIALIZE.ADA A661310.ADA
661_320_UPDATE.ADA A661320.ADA
661_400_TURN_ANGLE_AND_DIRECTION.ADA A661400.ADA
661_500_CRSSTRK_AND_{IDG_ERR_OPNS.ADA A661500.ADA
661_S10_COMP_WIIEN_TURNING.ADA A661510.ADA
661_520_COMP_WHEN_NOT_TURNING.ADA A661520.ADA
661_830_COMPUTE.ADA A661830.ADA
661_600_DIST_TO_CURR_WAYPOINT.ADA AG61600.ADA
661_700_COMP_TURN_NONTURN_DIST.ADA " AG6I1700.ADA

47

TABLE B-1. ADA SOURCE CODE INVENTORY (3 OF 10)

A:monics Benchmark Inventory lnd Cross-Reference

Developmenl Name ANSI Name
661_800_TURN_TEST_OPNS.ADA A661800.ADA
661 _810_STOP_TEST.ADA A661810.ADA
661_820_START_TEST.ADA A661820.ADA
661_900_STEERING_VECTOR_OPNS_ARCSIN.ADA AG6190.ADA
661_A00_DIST_TO_CURR_WAYPOINT_ARCSIN.ADA A661A00ADA
681_000_C_ALGEBRA_ADA A681000.ADA
681_001_C_ALGEBRA.ADA ~ A681001.ADA
681_200_MATRIX_OPNS.ADA I " AGBI200.ADA
681_230_SET_TO_IDENTITY_MATRIX.ADA A681230.ADA
681_240_SET_TO_ZERO_MATRIX.ADA T AG81240ADA
681_400 MATRD(_SCALAR_OPNS ADA I b B R&WABZ'
681_500_CROSS_PRODUCT.ADA ~ AG8ISO0.ADA
681_600_MATRIX_VECTOR_MULT.ADA " A681600.ADA
681_700_MATRIX_MATRIX_MULT.ADA A681700.ADA
682_000_GENERAL_ALGEBRA_.ADA A682000.ADA
682_001_GENERAL_ALGEBRA.ADA T A682001.ADA
682_100_VECTOR_OPNS_UC.ADA A682100.ADA
682_200_MATRIX_OPNS_UC.ADA A682200.ADA
682_300_DYN_SPARSE_MATRIX_UC.ADA A682300.ADA
682_400_SYMM_HALF_STORAGE_MATRIX.ADA A682400.ADA
682_500_SYMM_FULL_STORAGE_MATRIX_UC.ADA A682500.ADA
682_600_DIAGONAL_MATRIX.ADA " A682600.ADA
682_700_VECTOR_SCALAR_OPNS_UC.ADA " A682700.ADA
682_800_MATRIX_SCALAR_OPNS_UC.ADA A682800.ADA
682_900_DIAG_MATRIX_SCALAR_OPNS.ADA A682900.ADA
682_A00_MATRIX_MATRIX_MULT_UR.ADA A682A00.ADA
682_B00O_MATRIX_VECTOR_MULT_UR.ADA | Acs2B00.ADA
682_C00_VECTOR_VECTOR_TRANS_MULT_UR.ADA " A682000.ADA
682_D0O_MATRIX_MATRIX_TRANS_MULT_UR ADA A682D00.ADA
682_E00_DOT_PRODUCT_OPN_UR.ADA " A682E00.ADA
682_F00_DIAG_FULL_MATRIX_ADD_UR.ADA A682P00.ADA
682_000_VECTOR_OPNS_C.ADA ' A682G00.ADA
682_1100_MATRIX_OPNS_C.ADA A682HO0.ADA
682_J00_DYN_SPARSE_MATRIX_C.ADA A682100.ADA
682_K00_SYMM_FULL_STORAGE_MATRIX_C.ADA A682K00.ADA
682_LO0_VECTOR_SCALAR_OPNS_C.ADA A6821L00.ADA
682_MOO_MATRIX_SCALAR_OPNS_C.ADA A682M00.ADA
682_NOO_MATRIX_MATRIX_MULT_R.ADA A682N00.ADA
682_PO0_MATRIX_VECTOR_MULT_R.ADA A682P00.ADA
682_Q00_VECTOR_VECTOR_TRANS_MULT_R.ADA A682Q00.ADA

48

TABLE B-1. ADA SOURCE CODE INVENTORY (4 OF 10)

Amonics Benchmark lnvemory and Cxou-Refennce

Development Name ANSI Name
682_R00 MATRIX_MATRIX_TRANS_ MULT_R.ADA " A682R00.ADA
682_S00_DOT_PRODUCT_OPN_R.ADA © |7 Aes2sc0ADA
682_T00_DIAG_FULI._MATRIX_ADD_R.ADA AGR2TO0.ADA
682_U00_VECTOR_MATRIX_MULT_UR.ADA A682U00.ADA
682_V00_VECTOR_MATRIX_MULT_R.ADA A682V00.ADA
682_WO0_ABA_TRANS_DSP_MATRIX_SQ_MATRIX. ADA A682W00.ADA
682_X00_ABA_TRANS, vscrox_so MATRIX.ADA A682X00.ADA
682_YOU_ABA_TRANS VEC’I‘OR_SCALAR.ADA AG82YO0ADA
682_200_COL_MATRIX_OPNS. ADA ' 7 AG82Z0O0OADA
683_000_STANDARD_TRIG_.ADA " | Assm000ADA
683_001_STDTRIG_SYSFNS.ADA " A683001.ADA
684_000_GEOMETRIC_.ADA TAG84000.ADA
684_001_GEOMETRIC.ADA " A684001.ADA
684_100_UNIT_RADIAL_VECTOR.ADA A684100.ADA
684_200_UNIT_NL_VECTOR.ADA T A684200ADA
684_300_SEG_UNIT_NL_VECTORADA . A684300.ADA
[684_400_GREAT_CIRCLE_ARC_LENGTH.ADA A684400.ADA
684_500_SEG_UNIT_NL_VECTOR_ARCSIN.ADA A684500.ADA
686_000_SIGNAL_.ADA ‘ " A686000.ADA
686_001_SIGNAL.ADA : A686001.ADA
686_100_UL_LIMITER.ADA A686100.ADA
686_200_U_LIMITER.ADA A686200.ADA
686_300_L_LIMITER.ADA j " A686300.ADA
686_400_ABS_LIMITER ADA A686400.ADA
686_500_ABS_LIMITER_W_FLAG.ADA A686500.ADA
686_600_FIRST_ORDER_FILTER.ADA ~ A686600.ADA
686_700_TUSTIN_LAG_FILTER.ADA A686700.ADA
686_800_TUSTIN_LEAD_LAG_FILTER.ADA AGB6800.ADA
686_900_SECOND_ORDER_FILTER.ADA A686900.ADA
686_A00_TUSTIN_INTEGRATOR_W_LIMIT.ADA A686A00.ADA
686_BO0_TUSTIN_INT_W _ASYM_ LIMIT.ADA i AsssiiﬁoADA)
687_000_GP_MATIH_.ADA A68TO00.ADA
687_001_GP_MATH.ADA A687001.ADA
687_100_LOOKUP_EVEN.ADA A687100.ADA
687_200_LOOKUP_UNEVEN.ADA A687200.ADA
687_300_INCREMENTOR.ADA A687300.ADA
687_400_DECREMENTOR ADA A687400.ADA
687_S00_RUN_AVG.ADA A687500.ADA
687_600_ACCUM.ADA A687600.ADA
687_700_CHANGE_ACCUM.ADA " ASST700.ADA

49

TABLE B-1. ADA SOURCE CODE INVENTORY (5 OF 10)

‘Amonics Benchmark Invenlory and Crcm-Refetence

Development Name ANSI Nanie

687_800_CHANGE. CAEC_ABA (3 | AesT800.ADA

| 687_900_INTEGRATOR ADA T A6ST900.ADA
687_A00_INTERPOLATE.ADA T AesiA0ADA |

| 687_D00_Rsos.ADA | 7 Aes7D00.ADA
687_B00_SIGN.ADA AGSTE00.ADA
687_FO0_MEAN_ VAL.ADA " A6STROO.ADA
687_000_MAD.ADA i * i T AG87G00ADA |
687_H00_LOOKUP_TWOWAY.ADA AGSTHOO.ADA
638_001_POLYNOMIALS.ADA | Aess00rADA
688_200_CHEBYSHEV.ADA A688200.ADA
688_210_RADIAN_OPERATIONS.ADA A688210.ADA
688_220_DEGREE_OPERATIONS.ADA A688220.ADA
688_230_SEMICIRCLE_OPERATIONS.ADA A688230.ADA
688_300_FIKE.ADA i | A688300.ADA
688_310_SEMICIRCLE OPERATIONS.ADA | AessstoabDA
688_400_HART.ADA AG88400.ADA
688_410_RADIAN_OPERATIONS.ADA A688410.ADA
688_420_DEGREE_OPERATIONS.ADA A688420.ADA
688_500_11ASTINGS.ADA A688500.ADA
688_S10_RADIAN_OPERATIONS.ADA " AGSSSIOADA
688_520_DEGREE_OPERATIONS.ADA [" AG88520.ADA
688_800_MOD_NEWTON, RAPHSON.ADA "~ A688800.ADA
688_900_NEWTON_RAPHSON. ADA ul AGSS900.ADA
688_A00, TAYLOR_SERIES.ADA T A63SA00.ADA
688_A10_RADIAN_OPERATIONS.ADA AG38A10.ADA
688_A20_DEGREE_ OPERATIONS.ADA A688A20.ADA
688_A40_NATURAL | LB—GKB'A A | Aessas0.ADA
688_AS0_BASE_LOG.ADA AG88AS0.ADA
688_B0O_GENL_POLYNOMIAL.ADA A688B00.ADA
688_C00_SYSTEM_FUNCTIONS.ADA 1 A6s8C00.ADA
688_C10_RADIAN_OPNS.ADA " AG8SCI0ADA
488_C20_SEMICIRCLE_OPNS.ADA A688C20.ADA
688_C30_DEGREE_OPNS.ADA A638CI0.ADA
688_C40_SQUARE_ROOT.ADA AS88C40.ADA
688_C50_BASE_i0.ADA A688C50.ADA
688_C60_BASE_N.ADA A688C60.ADA
688_DO00_CONTINUED_FRACTIONS.ADA A688DO00.ADA
688_D10_RADIAN_OPERATIONS.ADA A688D10.ADA
688_B00_CODY_WAITE.ADA AG688E00.ADA
688_E40_NATURAL_LOG.ADA ASSSEA0ADA

TABLE B-1. ADA SOURCE CODE INVENTORY (6 OF 10)

Armmonics Benchmark Inventory and Cross-Reference

Development Namie ANSI Name
688_ESO_BASE_N.ADA ‘ 1 A6SSES0.ADA
688_F00_REDUCTION.ADA | A6SSFI0.ADA
851_000_UNIT_CONVERSION_.ADA T | ASS51000.ADA
851_001_UNIT_CONVERSION.ADA A851001.ADA
890_000_QUATERNION_ADA A890000.ADA
890_001_QUATERNION.ADA | As0001.ADA
890_100_EULER.ADA A890100.ADA
890_200_NORMALIZED.ADA | Asso200aDA

x) 11th Missile Code (some modified)
BARO_ALT_FOR_KF_TESTS.ADA : MBAFKFT.ADA
BARO_TEST_DRIVERADA P 'MBROTESADA
DATA_RETRIEVAL_FOR_GUIDOPNS_TEST.ADA "~ MDTARET.ADA
DO_SUM_BARO_ALTIMETER_FOR_BIAS_TEST.ADA MDSUMBA.ADA
DUMMY_AM.ADA N e 7 MDMMYAM.ADA
DUMMY_DO_SUM_BARO.ADA MDMMYDO.ADA
DUMMY_INITIALIZE_NAVIGATOR.ADA MDMMYINADA
DUMMY_VELOCITY_COMPUTATIONS.ADA MDMMYVEADA
EARTH_TO_BODY_TRANSFORMADA | MERTHTOADA
ENVIRONMENT_FOR_KF_TESTS.ADA MEVIRON.ADA
EXECUTE_NAVIGATOR ADA MXNAVIGADA
IEXECUTE_NAVIGATOR_TEST.ADA " MEXECUTADA
EX_NAV_KALMAN_FILTER_STUB.ADA MEXNAVK.ADA
GUID_COMPUTER_FOR_GUIDOPNS_TEST.ADA ~ MOUIDCOADA
INCORPORATI:_KALMAN_CORR.ADA MINCORP.ADA
INTERNAL_BUS_BROADCAST_FOR_KF_TESTS.ADA MINTERN.ADA
ISA_FOR_KF_TESTS.ADA ' MISAFOR.ADA
KALMAN_FILTER_STUB.ADA ~ MKALMAN.ADA
M007_100_GUIDANCE_OPNS.ADA "~ M007100.ADA
M007_110_PROCESSOR_MODIFIED.ADA © 7 M007110ADA
MO007_111_PRINCIPAL_VALUE.ADA MOO7111.ADA
M007_t12_PERFORM_INIT.ADA 17 Moo7112ADA
MOOT_tt3_WAYPT_CNTRL_OPNS.ADA M007113.ADA
MOO7_114_ITIGHT_CONTROLADA MO07114.ADA
MO07_t15_FIRST_ORDER.ADA MO07115.ADA
M012_000_GUIDANCT_DATA_TYPES_.ADA MO12000.ADA
M012_001_GUIDANCE_DATA_TYPES.ADA M012001.ADA
MO13_000_MISSION_DATA_ADA MO13000.ADA
MO14_000_NAV_COMPUTER_DATA_TYPES_.ADA MO14000.ADA
MO14_001_NAV_COMPUTER_DATA_TYPES.ADA MO14001.ADA
MO15_001_NAVIGATION_OPERATIONS.ADA 'M015001.ADA

51

TABLE B-1. ADA SOURCE CODE INVENTORY (7 OF 10)

Amonics Benchmark Inventory and Cross-Reference

Development Name ANSI Name
MO15_0200_EXECUTE_NAVIGATOR ADA MOI5020.ADA
M015_0900_SLAVE_CNEADA MO15090.ADA
MO13_0C00_BARO_LOOP_COMPUTATIONS.ADA MO130C0.ADA
MO15_0HO0_NAV_OPS_TEST_CODE.ADA MO150HO.ADA
MOI7_000_ALIONMENT_MEASUREMENTS_ADA MO17000 ADA
MOI8_000_NAV_SYSTEM_ADA MOISOOOADA
MO19_000_KALMAN_TYPES_.ADA MO19000ADA
M019_001_KALMAN_TYPES.ADA MO15001.ADA
M019_0100_F_OPERATIONS.ADA MOI9010.ADA
MO19_0200_PH1_OPERATIONS.ADA MO19020.ADA
MO19_0800_ACTIVE_KHPO.ADA MO19080.ADA
M019_0900_PASSIVE_KHPO.ADA MO019090.ADA
M019_0A00_DOPPLER_KHPO.ADA MO190A0.ADA
M021_000_KALMAN_FILTER_.ADA MO021000 ADA
M022_000_ENVIRONMENT_.ADA M022000.ADA
M024_000_H_ROW_ADA MO24000.ADA
M024_001_H_ROW.ADA M024001 . ADA
M611_000_WGS72_METRIC_.ADA " M611000.ADA
M612_000_WGS72_ENGINEERING_.ADA M612000.ADA
MEASUREMENTS. Fok_kp" TESTS.ADA ' MMEASURADA
MESSAGE, MANAGER_mR_cwDopNs TEST.ADA MMESSAG.ADA
MISSION_DATA _FOR_GUIDOPNS TEST.ADA MMISSIOADA
NAVIGAI‘ION OPERATIONS_. ADA MNAVIGA.ADA
NAV_SYSTEM_STUB.ADA MNAVSYS.ADA
OCU_FOR_KF_TESTS.ADA MOCUFOR.ADA
SCP_FOR_KF_TESTS.ADA MSCPFOR.ADA
TLM_FOR_KF_TESTS.ADA MTLMFOR.ADA
VELOCITY_COMPUTATIONS.ADA MVELOCLADA
VELOCTTY_COMPUTATIONS_TEST.ADA MVELOCT.ADA
VEL_TEST_DRIVER.ADA MVELTES.ADA
WANDER_ANGLE_COMPUTATIONS.ADA MWANDER ADA

Compilation Benchmark Source Code
10_WGS72U_.ADA CI0WGS7.ADA
20_NPNAV_ADA " C20NPNA.ADA
21_NPNAV.ADA C2INPNA.ADA
30_KFCOMMON_.ADA CIOKICO.ADA
31_KFCOMMON.ADA " C3IKFCO.ADA
40_KFCOMPLICATED_.ADA C40KFCO.ADA
41_KFCOMPLICATED.ADA C41KFCO.ADA
30_POLY_.ADA ' CSOPOLY.ADA

TABLE B-1. ADA SOURCE CODE INVENTORY (8 OF 10)

Amonics Benchmark Inventory and Cross-Reference

Developmenthnme 'ANSI Name
$1_POLY.ADA) " CSIPOLY.ADA
60_GVMA_ADA "~ C60GVMA.ADA
61_GVMA.ADA |77 csiavmaaDA
70_GPMATH_.ADA "~ C0GPMA.ADA
71_GPMATH.ADA C71GPMA.ADA
80_CVMA_.ADA [CSOCVMAADA
81_CVMA.ADA CBICVMA.ADA
90_STDTRIG_.ADA C90STDT.ADA
91_STDTRIG.ADA © 9ISTDTADA
AO_GEO_.ADA "~ CAOGEOX.ADA
AI_GEO.ADA] - CAIGEOX.ADA
BO_UNIVCONST_.ADA 'CBOUNIV.ADA
CO_CONVFACTORS_.ADA CCOCONV.ADA
DO_BDT_.ADA 'CDOBDTX.ADA
DI_BDT.ADA) | cDIBDTXADA
E0_WPS_.ADA CBOWPSX.ADA
EI_WPS.ADA CEIWPSX.ADA
FO_WGS72_ADA | crowas7.ADA
G0_KDT_.ADA " COOKDTX.ADA
GI_KDT.ADA COIKDTX.ADA]
ZI_NP_TDRVR.ADA "~ CZINPTID.ADA
Z2_WPS_TDRVR.ADA ~n T CZ2WPST.ADA
Z3_KF_TDRVR.ADA " CZ3KFTIDADA

Original Benchmark Source Eod-e G o
683A_000_STANDARD_TRIG_.ADA © A683A00.ADA
683A_001_STDTRIG_FIKE_HASTINGS.ADA a ASSJA0ADA
683B_000_STANDARD_TRIG_.ADA ' T A683B00.ADA
683B_001_STDTRIG_FIKE_HASTINGS.ADA A683B00.ADA
683_002_STD_TRO_NOSYS.ADA " A683002.ADA
687_COI_NEWTON_SQRT.ADA AGSTCUIADA
688_000_POL YNOMIALS_.ADA A688000.ADA
688_310_SEMICIRCLE_OPERATIONS ADA A688310.ADA
ANALYZE.ADA ' " BANALYZ.ADA
BENCHMARKING_TOOLS.ADA BBNMARK.ADA
BENCHMARKING_TOOLS_.ADA BBNCHMA.ADA
BENCHMARK_CONTENTS.ADA BBNCHMR.ADA
BENCHMARK_CONTENTS_.ADA BBNCHMK.ADA
CHEBYSHEV6_DRIVER.ADA BCHEBY6.ADA
CHEBYSHEV9_DRIVER.ADA BCHEBY9.ADA
CODY6_DRIVER.ADA BCDYSDRADA

53

TABLE B-1. ADA SOURCE CODE INVENTORY (9 OF 10)

Amonics Benchmark Inventory and Cross-Reference

'Development Name ~ ANSIName
CODY9_DRIVER.ADA ' BCDY9DR.ADA
CONTINUED6_DRIVER.ADA BCNT6DR.ADA
CONTINUED9_DRIVER.ADA BONTIDR.ADA
CONTINUED_FRACTION_BENCHMARK.ADA BCNTFRA.ADA
CONTINUED_FRACTION_BENCHMARK_.ADA BONTFRC.ADA
CPU_CLOCK.ADA BCPUCLO.ADA
FIKES_DRIVER.ADA BFIKE6D.ADA
FIKE9_DRIVER.ADA BFIKEYD.ADA
HART6_DRIVER ADA BHART6D.ADA
HARTY_DRIVER ADA BHART9D.ADA
HASTINGS6_DRIVER.ADA BHAST6D.ADA
HASTINGS9_DRIVER ADA BHAST9D.ADA
INT_BENCHMARKING_TOOLS.ADA BINTBEN.ADA
INT_BENCHMARKING_TOOLS_.ADA BINTBNC.ADA
KALMAN_COMMON_TEST.ADA BKALMNC.ADA
KALMAN_COMMON_TEST_.ADA BKALMAN.ADA
KALMAN_COMPACT_DRIVER.ADA BKLMANC.ADA
KALMAN_COMPACT_TEST.ADA BKLMNCO.ADA
KALMAN_COMPACT_TEST_.ADA BKLMCOM.ADA
KALMAN_COMPLICATED_DRIVERADA BKLMNCM.ADA
KALMAN_COMPLICATED_TEST.ADA BKLNCOM.ADA
KALMAN_COMPLICATED_TEST_.ADA BKLMCOM.ADA
MATRIX_OUTPUTADA BMATRIXADA
MATRIX_OUTPUT_.ADA BMTRIXO.ADA
NEWTON6_DRIVER.ADA BNWTN6D.ADA
NEWTON9_DRIVER.ADA BNEWTN9.ADA
POLYNOMIALS_NO_SYS_FUNC.ADA BPLYNOM.ADA
POLYNOMIALS_NO_SYS_FUNC_.ADA BPOLYNO.ADA
POLYNOMIAL_BENCHMARK.ADA BPOLYNM.ADA
POLYNOMIAL_BENCHMARK_.ADA BPOLNOM.ADA
REDUCE_SIM_LOG.ADA BREDUCE.ADA
SYSTEM_DRIVER.ADA BSYSTEM.ADA
TAYLOR6_DEOREE_DRIVER.ADA BTYLOR6.ADA
TAYLOR6_RADIAN_DRIVER.ADA BTAYLR6.ADA
TAYLORY_DEUREF_DRIVER ADA BTYLOR9.ADA
TAYLOR9_RADIAN_DRIVER.ADA RTAYLR9.ADA

Benchmark VAX/VMS Command Procedures
ACT_COMPILATION_RUN.COM JACTCOM.COM
COMPILATION_BENCHMARKS.COM JCMPILA.COM
COMPILE_BENCHMARK_SUPPORT.COM JCOMPIL.COM

54

\’

TABLE B-1. ADA SOURCE CODE INVENTORY (CONCLUDED)

Amonics Benchmark Inventory and Cross-Reference

Deveiopmenl Name ANSI Name
COMPILE_TOOLS.COM ICMPLTOCOM
INT_EXEC|_COM_LINK.COM " INTICM.COM
INT_EXEC2_COM_LINK.COM JINT2CM.COM
INT_EXEC3_COM_LINK.COM JINT3CM.COM
MODIFIED_POLY6_COM_LINK.COM JMDPOL6.COM
MODIFIED_POLY9_COM_LINK.COM SMDPOL9.COM
POLY6_COM_LINK.COM . JPLY6CM.COM
POLY9_COM_LINK.COM " JPLYICM.COM
SYSTEM_COM_LINK.COM JSYSCML.COM
TLD_BENCHMARKS_COM_LINK.COM " JTLDBCO.COM
TLD_COMPILATION_RUN.COM "~ ITLDCOM.COM
VAX_ANALYZE_COM_LINK.COM JVAXANL.COM
VAX_ANALYZE_POLY.COM "~ IVAXALY.COM
VAX_BENCHMARKS_COM_LINK.COM IVAXBSC.COM
VAX_COMPILATION_RUN.COM K ~ JVAXCOM.COM
VAX_INT_EXECI_RUN.COM JVAXIIR.COM
VAX_INT_EXEC2_RUN.COM JVAXIZR COM
VAX_INT_EXEC3_RUN.COM _ | vaxprcoMm
VAX_POLY_RUN.COM " IVAXPRU.COM

7 ANSUDeveIopt{lent Name Conversion
ANSI2DV.COM ol i S | ANsppv.com
DV2ANSLCOM " DV2ANSI.COM

Standard Output Data Files ==
VAX_INT_EXECI_RUN.DAT DVXIEIR.DAT
VAX_INT_EXEC2_RUN.DAT) "~ DVXIE2RDAT
VAX_INT_EXEC3_RUN.DAT "~ DVXIEIRDAT
HART6_DRIVER ANA DHART6D.ANA
HART6_DRIVER DAT " DHART6DDAT

55/56 (Blank)

o

INITIAL DISTRIBUTION LIST

GTE GOVERNMENT SYS CORP

ADVANCED DIGLTAL SYSTEMS

AFATL/FXG

MILITARY COMPUTER SYSTEMS

LOCKHEED/0/62-81, B/563, F15

HUGHES/FULLERTON

UNISYS/MS-E1D08

WESTINGHOUSE/BALTIMORE

AFWAL/AAAS-2

BOOZ-ALLEN & HAMILTON, INC

BOEING AEROSPACE COMPANY/MS 8H-09

BOEING AEROSPACE CO

AD/YGE

SOFTWARE PRODUCTIVITY CONSORTIUM

ARMY CECOM/AMSEL-COM-IA

NAVAL TRAINING SYS CENTER/CODE 251

SCIENCE APPLICATIONS INTL CORP

RAYTHEON/MSL SYS DIVISION

CALSPAN

KAMAN SCIENCES CORPORATION

NAVAL RESEARCH LAB/CODE 5595

CARNEGIE MELLON UNIV/SEI/SHOLOM

COLEMAN RESEARCH CORP

COLSA, INC

CONTROL DATA 'CORPORATION

WINTEC

CONTROL DATA/DEPT 1855

DACS/RADC/COED

RAYTHEON/EQPT DIV

BMO/ ACD

DDC-I, INC

ENGINEERING & ECONOMICS RESEARCH/
DIV OFFICE

BDM CORP

AFATL/FXG/EVERS

ESD/SYW-JPMO

FORD AEROSPACE & COMM CORP/MS HO4

UNIV OF COLORADO #202

ANALYTICS

AFWAL/FIGL

WESTINGHOUSE ELECTRIC CORP/MS 5220

GENERAL DYNAMICS/MZ W2-5530

HONEYWELL INC

TAMSCO

STARS

FORD AEROSPACE/MS 2/206

GRUMMAN HOUSTON CORPORATION

NAVAL AVIONICS CENTER/NAC-825

NASA JOHNSON SPACE CENTER/EH/GHG

BOEING AEROSPACE/MS-8Y97

HARRIS CORPORATION/GISD

N e N N S QS S G T N N N Y G S N — s gt 3

D e R e e e e S WU S S S S T QT e S Q'Y

(]
~J

CARNEGIE MELLON UNIV/

SOFTWARE ENGINEERING INST
NOAA/ERL/R/E/ALY
INTERMETRICS, INC/G. RENTH
INTERMETRICS, INC/D.P. SMITH
FORD AEROSPACE/WEST DEVEL DIV
AD/ENE
ROCKWELL/MS-GA21
GRUMMAN CORP/MS D-31-237
INSTITUTE OF DEFENSE ANALYSIS
TELEDYNE BROWN/MS 178
USAF/TAWC/SCAM
BOEING AEROSPACE CO/D. LINDBERG
LOGICON
EASTMAN KODAK/DEPT 47
SYSTEMS CONTROL TECH, INC
E-SYSTEMS/GARLAND DIV
AFWAL/AAAF
MARTIN DEVELOPMENT
MA COMPUTER ASSOCIATES INC
IBM FEDERAL SYS DIV/MC 3206C
MCDONNELL DOUGLAS/INCO, INC
UNITED TECH, ADVANCED SYS
MCDONNELL AIRCRAFT CO/DEPT 300
WESTINGHOUSE ELEC/MS 432
MHP FU-TECH, INC
ITT AVIONICS
COSMIC/UNIV OF GA
NAVAL OCEAN SYS CENTER/CODE 423
NAVAL WEAPONS CTR/CODE 3922
ODYSSEY RESEARCH ASSOCIATES, INC
USA ELEC PROVING GRD/STEEP MT-DA
PATHFINDER SYS
BDM CORPORATION
PERCEPTRONICS, INC
PHOENIX INTERNATIONAL
MCDONNELL DOUGLAS ASTRO CO
GTE LABORATORY/RUBEN PRIETO-DIAZ
PROPRIETARY SOFTWARE SYSTEMS
ADVANCED TECHNOLOGY
STANFORD TELECOMMUNICATIONS, INC
RATIONAL
LOCKHEED MISSILES & SPACE CO
HERCULES DEFENSE ELEC SYS
AEROSPACE CORP
ROGERS ENGINEERING & ASSOCIATES
ADASOFT INC
ESD/XRSE
SANDERS/MER 24-1212
CSC/ERIC SCHACHT
COMPUTER TECH ASSOCIATES, INC

e T S e o . S N N S N S S J S G U G G N T QY

INITIAL DISTRIBUTION LIST (CONCLUDED)

SCIENCE APPLICATIONS INTER CORP
HQ CASE/CBRC

GOULD INC/CSD

HQ AFSPACECOM/LKWD/STOP 32
SVERDRUP/EGLIN

HONEYWELL INC/CLEARWATER
TECHNOLOGY SERVICE CORP
AEROSPACE/LOS ANGELES

SOFTWARE ARCHITECTURE & ENGIN

LORAL SYSTEMS GROUP/D/U476-C2E

NADC/CODE 7033

UNISYS/PAOLA RESEARCH CTR

SIRIUS INC

GENERAL RESEARCH CORP

SOFTECH, INC/R.L. ZALKAN

SOFTECH, INC/R.B. QUANRUD

SOF TWARE CERTIFICATION INS

SOFTWARE CONSULTING SPECIALIST

SOFTWARE PRODUCTIVITY SOLUTIONS, INC

STAR-GLO INDUSTRIES INC

NADC/CODE 50C

WESTINGHOUSE/BALT IMORE

MITRE CORPORATION

SYSCON CORP/I. WEBER

SYSCON CORP/C. MORSE

SYSCON CORP/T. GROBICKI

AEROSPACE CORPORATION/M-8-026

TEXTRON DEFENSE SYSTEMS

GENERAL DYNAMICS/MZ 1774
TIBURON SYSTEMS, INC

TRW DEFENSE SYS GROUP

NASA SPACE STATION

BALLISTIC MSL DEF ADVANCED/
TECHNOLOGY CENTER

IBM CORPORATION/FSD

VISTA CONTROLS CORPORATION
VITRO CORPORATION

NAVAL RESEARCH LABORATORY/CODE 5150

CACI, INC

AFSC/PLR

DIRECTOR ADA JOINT PROGRAM OFFICE

MCDONNELL DOUGLAS ASTRONAUTICS/
E 434/106/2/MS22

SDI0/S/P1

ADVANCED SOFTWARE TECH SPECIALTIES
DTIC-DDAC

AFCSA/SAMI

AUL/LSE

— emd b d emd e e emd b e ed emd b) b e e emd e e e e e e e e) e e = o o

-) e e md e b

-t D) - =]

58

FTD/SDNF
AFWAL/FIES/SURVIAC
HQ USAFE/INATW
AFATL/CC

AFATL/CA

AFATL/DOIL

6575 SCHOOL SQUADRON
IITRI

-— e \) b wd e = -

—0' FE—

SUPPLEMENTARY

' INFORMATION

DEPARTMENT OF THE AIR FORCE
WRIGHT LABORATORY (AFSC)
EGLIN AIR FORCE BASE, FLORIDA, 32542-5434

ERRATA.
. ATNOR MNOI AD-B/3 Qj7/@' 13 Feb 92

sussecT: Removal of Distribution Statement and Export-Control Warning Notices

70. Defense Technical Information Center
ATIN: DTIC/HAR (Mr William Bush)
Bldg 5, Cameron Station
Alexandria, VA 22304-6145

1. The tollowing technical reports have been approved for public release by
the local Public Affairs Office (copy attached).

Technical Report Number AD Number

{. 88-18-Vol-4 ADB 120 251
2. 88-18-Vol-5 ADB 120 252
3. 88-18-Vol-6 ADB 120 253
4. 88-25-Vol-1 aDB 120 309
5. 88-25-Vol-2 ADB 120 310
6. 88-62-Vol-1 ADB 129 568
7. 88-62-Vol-2 ADB 129 569
. 88-62-Vol-3 ADB 129-570

9. 85-93-Vol-1 ADB 102-654 —
40. 85-93-Vol-2 ADB 102-655

A\, 85-93-Vol-3 ADB 102-656
A2. 88-18-Vol-1 ADB 120 248
{S., 88-18-Vol-2 aDB 120 249
{4, 88-18-Vol-7 ADB 120 254
{S. 88-18-Vol-8 ADB 120 255
46, 88-18-Vol-9 ADB 120 256.-.
{7. 88-18-Vol-10 ADB 120 257%
18.88-18-Vol-11 ADB 120 258
19. 88-18-Vol-12 ADB 120 259

2. If you have any questions regarding this request call me at DSN 872-4620.

v -

Chief, Scientific and Technical AFDTC/PA Ltr, dtd 30 Jan 92
Information Branch

ERRATA

OEPANTMENT OF THE AJR FORCE
HEADQUARTERS AR FORCE DEVELOPMENT TEST CENTER (AFSC)
ECUN AIR FORCE BASE, FLORIOA 32542-6000

ATMoF. PA (Jim Swinson, 882-3931) A Seapgary 1392

SUBIECT: Clearance for Public Release

O WL/MNA

v

The following technical reports have been reviewed and are approved for
public release: AFATL~-TR-88~18 (Volumes 1 & 2), AFATL~TR-88-18 (Volumes

4 thru 12), AFATL~-TR-88-25 (Volumes 1 & 2), AFATL~TR-88-62 (Volumes 1 thru 3)

f’m%—” (Volumes 1 thru 3).

N. PRIBYIA, Lt Col,
Chief of Public Affairs

AFDTC/PA 92-039

